The research and implementation of face detection and recognition based on video sequences

The detection and recognition of motive human face in video sequences is one of the international research hotspot currently. In order to achieve a face recognition system based on video, this paper used the method of difference in background images and the Kalman filter to track and extract the reg...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Qianqian Zhao, Hualong Cai
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page V1-321
container_issue
container_start_page V1-318
container_title
container_volume 1
creator Qianqian Zhao
Hualong Cai
description The detection and recognition of motive human face in video sequences is one of the international research hotspot currently. In order to achieve a face recognition system based on video, this paper used the method of difference in background images and the Kalman filter to track and extract the region of human body firstly, and then used the AdaBoost algorithm to detect human face in the region. Finally the improved Hidden Markov Model which is named as Pseudo-two-dimensional Hidden Markov Model was used for feature extraction and recognition in face image. In addition the effect of recognition was tested.
doi_str_mv 10.1109/ICFCC.2010.5497778
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5497778</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5497778</ieee_id><sourcerecordid>5497778</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-5f5f27278130f566f463bd591a979200a42e59a0534eeccc5ac5eddb677da77e3</originalsourceid><addsrcrecordid>eNpVkMFOwzAQRI0QEqjkB-DiH0hxbG8cH1FEoVIlLjlxqTb2mho1SYkDEn9PaHthL7tvtBqNhrG7QiyLQtiHdb2q66UUM4O2xpjqgmXWVIWWWkMllbr8x4W9ZllKH2IeDbIEuGFvzY74SIlwdDuOveexO-ypo37CKQ49HwIP6Ih7msgdlb-nkdzw3scjt5jI8_n4jp4Gnujzi3pH6ZZdBdwnys57wZrVU1O_5JvX53X9uMmjFVMOAYI0ck6pRICyDLpUrQdboDVWCoFaElgUoDSRcw7QAXnflsZ4NIbUgt2fbCMRbQ9j7HD82Z4LUb_VW1Ts</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>The research and implementation of face detection and recognition based on video sequences</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Qianqian Zhao ; Hualong Cai</creator><creatorcontrib>Qianqian Zhao ; Hualong Cai</creatorcontrib><description>The detection and recognition of motive human face in video sequences is one of the international research hotspot currently. In order to achieve a face recognition system based on video, this paper used the method of difference in background images and the Kalman filter to track and extract the region of human body firstly, and then used the AdaBoost algorithm to detect human face in the region. Finally the improved Hidden Markov Model which is named as Pseudo-two-dimensional Hidden Markov Model was used for feature extraction and recognition in face image. In addition the effect of recognition was tested.</description><identifier>ISBN: 9781424458219</identifier><identifier>ISBN: 1424458218</identifier><identifier>EISBN: 9781424458233</identifier><identifier>EISBN: 1424458242</identifier><identifier>EISBN: 1424458234</identifier><identifier>EISBN: 9781424458240</identifier><identifier>DOI: 10.1109/ICFCC.2010.5497778</identifier><language>eng</language><publisher>IEEE</publisher><subject>Face detection ; face detection and recognition ; Face recognition ; Feature extraction ; Filters ; Hidden Markov models ; Humans ; Image recognition ; Kalman filter ; Motion estimation ; P2D-HMM ; State estimation ; Video sequences</subject><ispartof>2010 2nd International Conference on Future Computer and Communication, 2010, Vol.1, p.V1-318-V1-321</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5497778$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,27904,54898</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5497778$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Qianqian Zhao</creatorcontrib><creatorcontrib>Hualong Cai</creatorcontrib><title>The research and implementation of face detection and recognition based on video sequences</title><title>2010 2nd International Conference on Future Computer and Communication</title><addtitle>ICFCC</addtitle><description>The detection and recognition of motive human face in video sequences is one of the international research hotspot currently. In order to achieve a face recognition system based on video, this paper used the method of difference in background images and the Kalman filter to track and extract the region of human body firstly, and then used the AdaBoost algorithm to detect human face in the region. Finally the improved Hidden Markov Model which is named as Pseudo-two-dimensional Hidden Markov Model was used for feature extraction and recognition in face image. In addition the effect of recognition was tested.</description><subject>Face detection</subject><subject>face detection and recognition</subject><subject>Face recognition</subject><subject>Feature extraction</subject><subject>Filters</subject><subject>Hidden Markov models</subject><subject>Humans</subject><subject>Image recognition</subject><subject>Kalman filter</subject><subject>Motion estimation</subject><subject>P2D-HMM</subject><subject>State estimation</subject><subject>Video sequences</subject><isbn>9781424458219</isbn><isbn>1424458218</isbn><isbn>9781424458233</isbn><isbn>1424458242</isbn><isbn>1424458234</isbn><isbn>9781424458240</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVkMFOwzAQRI0QEqjkB-DiH0hxbG8cH1FEoVIlLjlxqTb2mho1SYkDEn9PaHthL7tvtBqNhrG7QiyLQtiHdb2q66UUM4O2xpjqgmXWVIWWWkMllbr8x4W9ZllKH2IeDbIEuGFvzY74SIlwdDuOveexO-ypo37CKQ49HwIP6Ih7msgdlb-nkdzw3scjt5jI8_n4jp4Gnujzi3pH6ZZdBdwnys57wZrVU1O_5JvX53X9uMmjFVMOAYI0ck6pRICyDLpUrQdboDVWCoFaElgUoDSRcw7QAXnflsZ4NIbUgt2fbCMRbQ9j7HD82Z4LUb_VW1Ts</recordid><startdate>201005</startdate><enddate>201005</enddate><creator>Qianqian Zhao</creator><creator>Hualong Cai</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201005</creationdate><title>The research and implementation of face detection and recognition based on video sequences</title><author>Qianqian Zhao ; Hualong Cai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-5f5f27278130f566f463bd591a979200a42e59a0534eeccc5ac5eddb677da77e3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Face detection</topic><topic>face detection and recognition</topic><topic>Face recognition</topic><topic>Feature extraction</topic><topic>Filters</topic><topic>Hidden Markov models</topic><topic>Humans</topic><topic>Image recognition</topic><topic>Kalman filter</topic><topic>Motion estimation</topic><topic>P2D-HMM</topic><topic>State estimation</topic><topic>Video sequences</topic><toplevel>online_resources</toplevel><creatorcontrib>Qianqian Zhao</creatorcontrib><creatorcontrib>Hualong Cai</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Qianqian Zhao</au><au>Hualong Cai</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>The research and implementation of face detection and recognition based on video sequences</atitle><btitle>2010 2nd International Conference on Future Computer and Communication</btitle><stitle>ICFCC</stitle><date>2010-05</date><risdate>2010</risdate><volume>1</volume><spage>V1-318</spage><epage>V1-321</epage><pages>V1-318-V1-321</pages><isbn>9781424458219</isbn><isbn>1424458218</isbn><eisbn>9781424458233</eisbn><eisbn>1424458242</eisbn><eisbn>1424458234</eisbn><eisbn>9781424458240</eisbn><abstract>The detection and recognition of motive human face in video sequences is one of the international research hotspot currently. In order to achieve a face recognition system based on video, this paper used the method of difference in background images and the Kalman filter to track and extract the region of human body firstly, and then used the AdaBoost algorithm to detect human face in the region. Finally the improved Hidden Markov Model which is named as Pseudo-two-dimensional Hidden Markov Model was used for feature extraction and recognition in face image. In addition the effect of recognition was tested.</abstract><pub>IEEE</pub><doi>10.1109/ICFCC.2010.5497778</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9781424458219
ispartof 2010 2nd International Conference on Future Computer and Communication, 2010, Vol.1, p.V1-318-V1-321
issn
language eng
recordid cdi_ieee_primary_5497778
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Face detection
face detection and recognition
Face recognition
Feature extraction
Filters
Hidden Markov models
Humans
Image recognition
Kalman filter
Motion estimation
P2D-HMM
State estimation
Video sequences
title The research and implementation of face detection and recognition based on video sequences
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T02%3A32%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=The%20research%20and%20implementation%20of%20face%20detection%20and%20recognition%20based%20on%20video%20sequences&rft.btitle=2010%202nd%20International%20Conference%20on%20Future%20Computer%20and%20Communication&rft.au=Qianqian%20Zhao&rft.date=2010-05&rft.volume=1&rft.spage=V1-318&rft.epage=V1-321&rft.pages=V1-318-V1-321&rft.isbn=9781424458219&rft.isbn_list=1424458218&rft_id=info:doi/10.1109/ICFCC.2010.5497778&rft_dat=%3Cieee_6IE%3E5497778%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424458233&rft.eisbn_list=1424458242&rft.eisbn_list=1424458234&rft.eisbn_list=9781424458240&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5497778&rfr_iscdi=true