Angle-Doppler processing using sparse regularization
The detection of moving objects on the ground by airborne radar is one application of space-time adaptive processing (STAP). The goal is to estimate the position and velocity of objects. This paper considers the problem as a linear inverse problem and uses ℓ 1 -norm regularization to promote sparsit...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2753 |
---|---|
container_issue | |
container_start_page | 2750 |
container_title | |
container_volume | |
creator | Selesnick, I W Pillai, S U Ke Yong Li Himed, B |
description | The detection of moving objects on the ground by airborne radar is one application of space-time adaptive processing (STAP). The goal is to estimate the position and velocity of objects. This paper considers the problem as a linear inverse problem and uses ℓ 1 -norm regularization to promote sparsity in the solution. It is proposed that the angle-Doppler plane be explicitly segmented into the clutter ridge component and a non-clutter-ridge component. We propose that the second component be modeled as sparse - as the moving objects are assumed to be well isolated in the angle-Doppler plane. |
doi_str_mv | 10.1109/ICASSP.2010.5496219 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5496219</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5496219</ieee_id><sourcerecordid>5496219</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-1dfca2703b4329b229eb87b5aae6dd243e96272554ca2a67c7ff226b39c4f2f73</originalsourceid><addsrcrecordid>eNpVUMtqwzAQVF9QN80X5OIfUCqtVpJ1DOkTAi2khd6CbK-NimsbKTm0X1_T5tLLDMwMy84wtpBiKaVwN0_r1Xb7sgQxCRqdAelO2NzZQiIgIjhjTlkGyjounXg_--dpd84yqUFwI9FdsquUPoQQhcUiY7jq24747TCOHcV8jENFKYW-zQ-_mEYfE-WR2kPnY_j2-zD01-yi8V2i-ZFn7O3-7nX9yDfPD9OrGx6k1Xsu66byYIUqUYErARyVhS2192TqGlDR1MSC1jjFvLGVbRoAUypXYQONVTO2-LsbiGg3xvDp49fuOID6ASGFS00</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Angle-Doppler processing using sparse regularization</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Selesnick, I W ; Pillai, S U ; Ke Yong Li ; Himed, B</creator><creatorcontrib>Selesnick, I W ; Pillai, S U ; Ke Yong Li ; Himed, B</creatorcontrib><description>The detection of moving objects on the ground by airborne radar is one application of space-time adaptive processing (STAP). The goal is to estimate the position and velocity of objects. This paper considers the problem as a linear inverse problem and uses ℓ 1 -norm regularization to promote sparsity in the solution. It is proposed that the angle-Doppler plane be explicitly segmented into the clutter ridge component and a non-clutter-ridge component. We propose that the second component be modeled as sparse - as the moving objects are assumed to be well isolated in the angle-Doppler plane.</description><identifier>ISSN: 1520-6149</identifier><identifier>ISBN: 9781424442959</identifier><identifier>ISBN: 1424442958</identifier><identifier>EISSN: 2379-190X</identifier><identifier>EISBN: 9781424442966</identifier><identifier>EISBN: 1424442966</identifier><identifier>DOI: 10.1109/ICASSP.2010.5496219</identifier><language>eng</language><publisher>IEEE</publisher><subject>Airborne radar ; Clutter ; GMTI ; Inverse problems ; iterated thresholding ; Iterative algorithms ; Layout ; Object detection ; radar ; Radar applications ; Radar detection ; Sensor arrays ; Signal processing algorithms ; signal restoration ; sparsity ; STAP</subject><ispartof>2010 IEEE International Conference on Acoustics, Speech and Signal Processing, 2010, p.2750-2753</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5496219$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,777,781,786,787,2052,27906,54901</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5496219$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Selesnick, I W</creatorcontrib><creatorcontrib>Pillai, S U</creatorcontrib><creatorcontrib>Ke Yong Li</creatorcontrib><creatorcontrib>Himed, B</creatorcontrib><title>Angle-Doppler processing using sparse regularization</title><title>2010 IEEE International Conference on Acoustics, Speech and Signal Processing</title><addtitle>ICASSP</addtitle><description>The detection of moving objects on the ground by airborne radar is one application of space-time adaptive processing (STAP). The goal is to estimate the position and velocity of objects. This paper considers the problem as a linear inverse problem and uses ℓ 1 -norm regularization to promote sparsity in the solution. It is proposed that the angle-Doppler plane be explicitly segmented into the clutter ridge component and a non-clutter-ridge component. We propose that the second component be modeled as sparse - as the moving objects are assumed to be well isolated in the angle-Doppler plane.</description><subject>Airborne radar</subject><subject>Clutter</subject><subject>GMTI</subject><subject>Inverse problems</subject><subject>iterated thresholding</subject><subject>Iterative algorithms</subject><subject>Layout</subject><subject>Object detection</subject><subject>radar</subject><subject>Radar applications</subject><subject>Radar detection</subject><subject>Sensor arrays</subject><subject>Signal processing algorithms</subject><subject>signal restoration</subject><subject>sparsity</subject><subject>STAP</subject><issn>1520-6149</issn><issn>2379-190X</issn><isbn>9781424442959</isbn><isbn>1424442958</isbn><isbn>9781424442966</isbn><isbn>1424442966</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVUMtqwzAQVF9QN80X5OIfUCqtVpJ1DOkTAi2khd6CbK-NimsbKTm0X1_T5tLLDMwMy84wtpBiKaVwN0_r1Xb7sgQxCRqdAelO2NzZQiIgIjhjTlkGyjounXg_--dpd84yqUFwI9FdsquUPoQQhcUiY7jq24747TCOHcV8jENFKYW-zQ-_mEYfE-WR2kPnY_j2-zD01-yi8V2i-ZFn7O3-7nX9yDfPD9OrGx6k1Xsu66byYIUqUYErARyVhS2192TqGlDR1MSC1jjFvLGVbRoAUypXYQONVTO2-LsbiGg3xvDp49fuOID6ASGFS00</recordid><startdate>201003</startdate><enddate>201003</enddate><creator>Selesnick, I W</creator><creator>Pillai, S U</creator><creator>Ke Yong Li</creator><creator>Himed, B</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201003</creationdate><title>Angle-Doppler processing using sparse regularization</title><author>Selesnick, I W ; Pillai, S U ; Ke Yong Li ; Himed, B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-1dfca2703b4329b229eb87b5aae6dd243e96272554ca2a67c7ff226b39c4f2f73</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Airborne radar</topic><topic>Clutter</topic><topic>GMTI</topic><topic>Inverse problems</topic><topic>iterated thresholding</topic><topic>Iterative algorithms</topic><topic>Layout</topic><topic>Object detection</topic><topic>radar</topic><topic>Radar applications</topic><topic>Radar detection</topic><topic>Sensor arrays</topic><topic>Signal processing algorithms</topic><topic>signal restoration</topic><topic>sparsity</topic><topic>STAP</topic><toplevel>online_resources</toplevel><creatorcontrib>Selesnick, I W</creatorcontrib><creatorcontrib>Pillai, S U</creatorcontrib><creatorcontrib>Ke Yong Li</creatorcontrib><creatorcontrib>Himed, B</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Selesnick, I W</au><au>Pillai, S U</au><au>Ke Yong Li</au><au>Himed, B</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Angle-Doppler processing using sparse regularization</atitle><btitle>2010 IEEE International Conference on Acoustics, Speech and Signal Processing</btitle><stitle>ICASSP</stitle><date>2010-03</date><risdate>2010</risdate><spage>2750</spage><epage>2753</epage><pages>2750-2753</pages><issn>1520-6149</issn><eissn>2379-190X</eissn><isbn>9781424442959</isbn><isbn>1424442958</isbn><eisbn>9781424442966</eisbn><eisbn>1424442966</eisbn><abstract>The detection of moving objects on the ground by airborne radar is one application of space-time adaptive processing (STAP). The goal is to estimate the position and velocity of objects. This paper considers the problem as a linear inverse problem and uses ℓ 1 -norm regularization to promote sparsity in the solution. It is proposed that the angle-Doppler plane be explicitly segmented into the clutter ridge component and a non-clutter-ridge component. We propose that the second component be modeled as sparse - as the moving objects are assumed to be well isolated in the angle-Doppler plane.</abstract><pub>IEEE</pub><doi>10.1109/ICASSP.2010.5496219</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1520-6149 |
ispartof | 2010 IEEE International Conference on Acoustics, Speech and Signal Processing, 2010, p.2750-2753 |
issn | 1520-6149 2379-190X |
language | eng |
recordid | cdi_ieee_primary_5496219 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Airborne radar Clutter GMTI Inverse problems iterated thresholding Iterative algorithms Layout Object detection radar Radar applications Radar detection Sensor arrays Signal processing algorithms signal restoration sparsity STAP |
title | Angle-Doppler processing using sparse regularization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T00%3A37%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Angle-Doppler%20processing%20using%20sparse%20regularization&rft.btitle=2010%20IEEE%20International%20Conference%20on%20Acoustics,%20Speech%20and%20Signal%20Processing&rft.au=Selesnick,%20I%20W&rft.date=2010-03&rft.spage=2750&rft.epage=2753&rft.pages=2750-2753&rft.issn=1520-6149&rft.eissn=2379-190X&rft.isbn=9781424442959&rft.isbn_list=1424442958&rft_id=info:doi/10.1109/ICASSP.2010.5496219&rft_dat=%3Cieee_6IE%3E5496219%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424442966&rft.eisbn_list=1424442966&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5496219&rfr_iscdi=true |