Angle-Doppler processing using sparse regularization

The detection of moving objects on the ground by airborne radar is one application of space-time adaptive processing (STAP). The goal is to estimate the position and velocity of objects. This paper considers the problem as a linear inverse problem and uses ℓ 1 -norm regularization to promote sparsit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Selesnick, I W, Pillai, S U, Ke Yong Li, Himed, B
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2753
container_issue
container_start_page 2750
container_title
container_volume
creator Selesnick, I W
Pillai, S U
Ke Yong Li
Himed, B
description The detection of moving objects on the ground by airborne radar is one application of space-time adaptive processing (STAP). The goal is to estimate the position and velocity of objects. This paper considers the problem as a linear inverse problem and uses ℓ 1 -norm regularization to promote sparsity in the solution. It is proposed that the angle-Doppler plane be explicitly segmented into the clutter ridge component and a non-clutter-ridge component. We propose that the second component be modeled as sparse - as the moving objects are assumed to be well isolated in the angle-Doppler plane.
doi_str_mv 10.1109/ICASSP.2010.5496219
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5496219</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5496219</ieee_id><sourcerecordid>5496219</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-1dfca2703b4329b229eb87b5aae6dd243e96272554ca2a67c7ff226b39c4f2f73</originalsourceid><addsrcrecordid>eNpVUMtqwzAQVF9QN80X5OIfUCqtVpJ1DOkTAi2khd6CbK-NimsbKTm0X1_T5tLLDMwMy84wtpBiKaVwN0_r1Xb7sgQxCRqdAelO2NzZQiIgIjhjTlkGyjounXg_--dpd84yqUFwI9FdsquUPoQQhcUiY7jq24747TCOHcV8jENFKYW-zQ-_mEYfE-WR2kPnY_j2-zD01-yi8V2i-ZFn7O3-7nX9yDfPD9OrGx6k1Xsu66byYIUqUYErARyVhS2192TqGlDR1MSC1jjFvLGVbRoAUypXYQONVTO2-LsbiGg3xvDp49fuOID6ASGFS00</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Angle-Doppler processing using sparse regularization</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Selesnick, I W ; Pillai, S U ; Ke Yong Li ; Himed, B</creator><creatorcontrib>Selesnick, I W ; Pillai, S U ; Ke Yong Li ; Himed, B</creatorcontrib><description>The detection of moving objects on the ground by airborne radar is one application of space-time adaptive processing (STAP). The goal is to estimate the position and velocity of objects. This paper considers the problem as a linear inverse problem and uses ℓ 1 -norm regularization to promote sparsity in the solution. It is proposed that the angle-Doppler plane be explicitly segmented into the clutter ridge component and a non-clutter-ridge component. We propose that the second component be modeled as sparse - as the moving objects are assumed to be well isolated in the angle-Doppler plane.</description><identifier>ISSN: 1520-6149</identifier><identifier>ISBN: 9781424442959</identifier><identifier>ISBN: 1424442958</identifier><identifier>EISSN: 2379-190X</identifier><identifier>EISBN: 9781424442966</identifier><identifier>EISBN: 1424442966</identifier><identifier>DOI: 10.1109/ICASSP.2010.5496219</identifier><language>eng</language><publisher>IEEE</publisher><subject>Airborne radar ; Clutter ; GMTI ; Inverse problems ; iterated thresholding ; Iterative algorithms ; Layout ; Object detection ; radar ; Radar applications ; Radar detection ; Sensor arrays ; Signal processing algorithms ; signal restoration ; sparsity ; STAP</subject><ispartof>2010 IEEE International Conference on Acoustics, Speech and Signal Processing, 2010, p.2750-2753</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5496219$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,777,781,786,787,2052,27906,54901</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5496219$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Selesnick, I W</creatorcontrib><creatorcontrib>Pillai, S U</creatorcontrib><creatorcontrib>Ke Yong Li</creatorcontrib><creatorcontrib>Himed, B</creatorcontrib><title>Angle-Doppler processing using sparse regularization</title><title>2010 IEEE International Conference on Acoustics, Speech and Signal Processing</title><addtitle>ICASSP</addtitle><description>The detection of moving objects on the ground by airborne radar is one application of space-time adaptive processing (STAP). The goal is to estimate the position and velocity of objects. This paper considers the problem as a linear inverse problem and uses ℓ 1 -norm regularization to promote sparsity in the solution. It is proposed that the angle-Doppler plane be explicitly segmented into the clutter ridge component and a non-clutter-ridge component. We propose that the second component be modeled as sparse - as the moving objects are assumed to be well isolated in the angle-Doppler plane.</description><subject>Airborne radar</subject><subject>Clutter</subject><subject>GMTI</subject><subject>Inverse problems</subject><subject>iterated thresholding</subject><subject>Iterative algorithms</subject><subject>Layout</subject><subject>Object detection</subject><subject>radar</subject><subject>Radar applications</subject><subject>Radar detection</subject><subject>Sensor arrays</subject><subject>Signal processing algorithms</subject><subject>signal restoration</subject><subject>sparsity</subject><subject>STAP</subject><issn>1520-6149</issn><issn>2379-190X</issn><isbn>9781424442959</isbn><isbn>1424442958</isbn><isbn>9781424442966</isbn><isbn>1424442966</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVUMtqwzAQVF9QN80X5OIfUCqtVpJ1DOkTAi2khd6CbK-NimsbKTm0X1_T5tLLDMwMy84wtpBiKaVwN0_r1Xb7sgQxCRqdAelO2NzZQiIgIjhjTlkGyjounXg_--dpd84yqUFwI9FdsquUPoQQhcUiY7jq24747TCOHcV8jENFKYW-zQ-_mEYfE-WR2kPnY_j2-zD01-yi8V2i-ZFn7O3-7nX9yDfPD9OrGx6k1Xsu66byYIUqUYErARyVhS2192TqGlDR1MSC1jjFvLGVbRoAUypXYQONVTO2-LsbiGg3xvDp49fuOID6ASGFS00</recordid><startdate>201003</startdate><enddate>201003</enddate><creator>Selesnick, I W</creator><creator>Pillai, S U</creator><creator>Ke Yong Li</creator><creator>Himed, B</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201003</creationdate><title>Angle-Doppler processing using sparse regularization</title><author>Selesnick, I W ; Pillai, S U ; Ke Yong Li ; Himed, B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-1dfca2703b4329b229eb87b5aae6dd243e96272554ca2a67c7ff226b39c4f2f73</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Airborne radar</topic><topic>Clutter</topic><topic>GMTI</topic><topic>Inverse problems</topic><topic>iterated thresholding</topic><topic>Iterative algorithms</topic><topic>Layout</topic><topic>Object detection</topic><topic>radar</topic><topic>Radar applications</topic><topic>Radar detection</topic><topic>Sensor arrays</topic><topic>Signal processing algorithms</topic><topic>signal restoration</topic><topic>sparsity</topic><topic>STAP</topic><toplevel>online_resources</toplevel><creatorcontrib>Selesnick, I W</creatorcontrib><creatorcontrib>Pillai, S U</creatorcontrib><creatorcontrib>Ke Yong Li</creatorcontrib><creatorcontrib>Himed, B</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Selesnick, I W</au><au>Pillai, S U</au><au>Ke Yong Li</au><au>Himed, B</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Angle-Doppler processing using sparse regularization</atitle><btitle>2010 IEEE International Conference on Acoustics, Speech and Signal Processing</btitle><stitle>ICASSP</stitle><date>2010-03</date><risdate>2010</risdate><spage>2750</spage><epage>2753</epage><pages>2750-2753</pages><issn>1520-6149</issn><eissn>2379-190X</eissn><isbn>9781424442959</isbn><isbn>1424442958</isbn><eisbn>9781424442966</eisbn><eisbn>1424442966</eisbn><abstract>The detection of moving objects on the ground by airborne radar is one application of space-time adaptive processing (STAP). The goal is to estimate the position and velocity of objects. This paper considers the problem as a linear inverse problem and uses ℓ 1 -norm regularization to promote sparsity in the solution. It is proposed that the angle-Doppler plane be explicitly segmented into the clutter ridge component and a non-clutter-ridge component. We propose that the second component be modeled as sparse - as the moving objects are assumed to be well isolated in the angle-Doppler plane.</abstract><pub>IEEE</pub><doi>10.1109/ICASSP.2010.5496219</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1520-6149
ispartof 2010 IEEE International Conference on Acoustics, Speech and Signal Processing, 2010, p.2750-2753
issn 1520-6149
2379-190X
language eng
recordid cdi_ieee_primary_5496219
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Airborne radar
Clutter
GMTI
Inverse problems
iterated thresholding
Iterative algorithms
Layout
Object detection
radar
Radar applications
Radar detection
Sensor arrays
Signal processing algorithms
signal restoration
sparsity
STAP
title Angle-Doppler processing using sparse regularization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T00%3A37%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Angle-Doppler%20processing%20using%20sparse%20regularization&rft.btitle=2010%20IEEE%20International%20Conference%20on%20Acoustics,%20Speech%20and%20Signal%20Processing&rft.au=Selesnick,%20I%20W&rft.date=2010-03&rft.spage=2750&rft.epage=2753&rft.pages=2750-2753&rft.issn=1520-6149&rft.eissn=2379-190X&rft.isbn=9781424442959&rft.isbn_list=1424442958&rft_id=info:doi/10.1109/ICASSP.2010.5496219&rft_dat=%3Cieee_6IE%3E5496219%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424442966&rft.eisbn_list=1424442966&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5496219&rfr_iscdi=true