Hierarchical Bayesian modeling of inter-trial variability and variational Bayesian learning of common spatial patterns from multichannel EEG

In numerous neuroscience studies, multichannel EEG data are often recorded over multiple trial periods under the same experimental condition. To date, little effort is aimed to learn spatial patterns from EEG data to account for trial-to-trial variability. In this paper, a hierarchical Bayesian fram...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Wei Wu, Zhe Chen, Shangkai Gao, Brown, E N
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 504
container_issue
container_start_page 501
container_title
container_volume
creator Wei Wu
Zhe Chen
Shangkai Gao
Brown, E N
description In numerous neuroscience studies, multichannel EEG data are often recorded over multiple trial periods under the same experimental condition. To date, little effort is aimed to learn spatial patterns from EEG data to account for trial-to-trial variability. In this paper, a hierarchical Bayesian framework is introduced to model inter-trial source variability while extracting common spatial patterns under multiple experimental conditions in a supervised manner. We also present a variational Bayesian algorithm for model inference, by which the number of sources can be determined effectively via automatic relevance determination (ARD). The efficacy of the proposed learning algorithm is validated with both synthetic and real EEG data. Using two brain-computer interface (BCI) motor imagery data sets we show the proposed algorithm consistently outperforms the common spatial patterns (CSP) algorithm while attaining comparable performance with a recently proposed discriminative approach.
doi_str_mv 10.1109/ICASSP.2010.5495663
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5495663</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5495663</ieee_id><sourcerecordid>5495663</sourcerecordid><originalsourceid>FETCH-LOGICAL-i220t-ce3c940c667944a3a442c8aab5afb0dec0e50a5d483769af4f9751dea0df73f03</originalsourceid><addsrcrecordid>eNpVkN1KAzEQheMfWGufoDd5ga2Tzc9uLrXUVigoVMG7Ms0mNrKbLdlV2HfwoQ20F3p1mJnvHJhDyJTBjDHQd0_z-83mZZZDWkihpVL8jEx0UTKRCyFyrdQ5GeW80BnT8H7x7yb1JRkxmUOmmNDX5KbrPgGgLEQ5Ij8rbyNGs_cGa_qAg-08Btq0la19-KCtoz70NmZ99An4xiQ7X_t-oBiq49z7Nvw11xZjOJlN2zRtoN0hUYlJksJCR11sG9p81b03ewzB1nSxWN6SK4d1ZycnHZO3x8XrfJWtn5epgnXm8xz6zFhutACjVKGFQI7pS1Mi7iS6HVTWgJWAshIlL5RGJ5wuJKssQuUK7oCPyfSY662120P0DcZheyqW_wJfcmyI</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Hierarchical Bayesian modeling of inter-trial variability and variational Bayesian learning of common spatial patterns from multichannel EEG</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Wei Wu ; Zhe Chen ; Shangkai Gao ; Brown, E N</creator><creatorcontrib>Wei Wu ; Zhe Chen ; Shangkai Gao ; Brown, E N</creatorcontrib><description>In numerous neuroscience studies, multichannel EEG data are often recorded over multiple trial periods under the same experimental condition. To date, little effort is aimed to learn spatial patterns from EEG data to account for trial-to-trial variability. In this paper, a hierarchical Bayesian framework is introduced to model inter-trial source variability while extracting common spatial patterns under multiple experimental conditions in a supervised manner. We also present a variational Bayesian algorithm for model inference, by which the number of sources can be determined effectively via automatic relevance determination (ARD). The efficacy of the proposed learning algorithm is validated with both synthetic and real EEG data. Using two brain-computer interface (BCI) motor imagery data sets we show the proposed algorithm consistently outperforms the common spatial patterns (CSP) algorithm while attaining comparable performance with a recently proposed discriminative approach.</description><identifier>ISSN: 1520-6149</identifier><identifier>ISBN: 9781424442959</identifier><identifier>ISBN: 1424442958</identifier><identifier>EISSN: 2379-190X</identifier><identifier>EISBN: 9781424442966</identifier><identifier>EISBN: 1424442966</identifier><identifier>DOI: 10.1109/ICASSP.2010.5495663</identifier><language>eng</language><publisher>IEEE</publisher><subject>Assembly ; Bayesian methods ; Blind source separation ; Brain modeling ; Data mining ; Electroencephalography ; Independent component analysis ; Inference algorithms ; Neuroscience ; Signal processing algorithms</subject><ispartof>2010 IEEE International Conference on Acoustics, Speech and Signal Processing, 2010, p.501-504</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5495663$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>310,311,781,785,790,791,2059,27929,54924</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5495663$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wei Wu</creatorcontrib><creatorcontrib>Zhe Chen</creatorcontrib><creatorcontrib>Shangkai Gao</creatorcontrib><creatorcontrib>Brown, E N</creatorcontrib><title>Hierarchical Bayesian modeling of inter-trial variability and variational Bayesian learning of common spatial patterns from multichannel EEG</title><title>2010 IEEE International Conference on Acoustics, Speech and Signal Processing</title><addtitle>ICASSP</addtitle><description>In numerous neuroscience studies, multichannel EEG data are often recorded over multiple trial periods under the same experimental condition. To date, little effort is aimed to learn spatial patterns from EEG data to account for trial-to-trial variability. In this paper, a hierarchical Bayesian framework is introduced to model inter-trial source variability while extracting common spatial patterns under multiple experimental conditions in a supervised manner. We also present a variational Bayesian algorithm for model inference, by which the number of sources can be determined effectively via automatic relevance determination (ARD). The efficacy of the proposed learning algorithm is validated with both synthetic and real EEG data. Using two brain-computer interface (BCI) motor imagery data sets we show the proposed algorithm consistently outperforms the common spatial patterns (CSP) algorithm while attaining comparable performance with a recently proposed discriminative approach.</description><subject>Assembly</subject><subject>Bayesian methods</subject><subject>Blind source separation</subject><subject>Brain modeling</subject><subject>Data mining</subject><subject>Electroencephalography</subject><subject>Independent component analysis</subject><subject>Inference algorithms</subject><subject>Neuroscience</subject><subject>Signal processing algorithms</subject><issn>1520-6149</issn><issn>2379-190X</issn><isbn>9781424442959</isbn><isbn>1424442958</isbn><isbn>9781424442966</isbn><isbn>1424442966</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVkN1KAzEQheMfWGufoDd5ga2Tzc9uLrXUVigoVMG7Ms0mNrKbLdlV2HfwoQ20F3p1mJnvHJhDyJTBjDHQd0_z-83mZZZDWkihpVL8jEx0UTKRCyFyrdQ5GeW80BnT8H7x7yb1JRkxmUOmmNDX5KbrPgGgLEQ5Ij8rbyNGs_cGa_qAg-08Btq0la19-KCtoz70NmZ99An4xiQ7X_t-oBiq49z7Nvw11xZjOJlN2zRtoN0hUYlJksJCR11sG9p81b03ewzB1nSxWN6SK4d1ZycnHZO3x8XrfJWtn5epgnXm8xz6zFhutACjVKGFQI7pS1Mi7iS6HVTWgJWAshIlL5RGJ5wuJKssQuUK7oCPyfSY662120P0DcZheyqW_wJfcmyI</recordid><startdate>201003</startdate><enddate>201003</enddate><creator>Wei Wu</creator><creator>Zhe Chen</creator><creator>Shangkai Gao</creator><creator>Brown, E N</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201003</creationdate><title>Hierarchical Bayesian modeling of inter-trial variability and variational Bayesian learning of common spatial patterns from multichannel EEG</title><author>Wei Wu ; Zhe Chen ; Shangkai Gao ; Brown, E N</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i220t-ce3c940c667944a3a442c8aab5afb0dec0e50a5d483769af4f9751dea0df73f03</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Assembly</topic><topic>Bayesian methods</topic><topic>Blind source separation</topic><topic>Brain modeling</topic><topic>Data mining</topic><topic>Electroencephalography</topic><topic>Independent component analysis</topic><topic>Inference algorithms</topic><topic>Neuroscience</topic><topic>Signal processing algorithms</topic><toplevel>online_resources</toplevel><creatorcontrib>Wei Wu</creatorcontrib><creatorcontrib>Zhe Chen</creatorcontrib><creatorcontrib>Shangkai Gao</creatorcontrib><creatorcontrib>Brown, E N</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wei Wu</au><au>Zhe Chen</au><au>Shangkai Gao</au><au>Brown, E N</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Hierarchical Bayesian modeling of inter-trial variability and variational Bayesian learning of common spatial patterns from multichannel EEG</atitle><btitle>2010 IEEE International Conference on Acoustics, Speech and Signal Processing</btitle><stitle>ICASSP</stitle><date>2010-03</date><risdate>2010</risdate><spage>501</spage><epage>504</epage><pages>501-504</pages><issn>1520-6149</issn><eissn>2379-190X</eissn><isbn>9781424442959</isbn><isbn>1424442958</isbn><eisbn>9781424442966</eisbn><eisbn>1424442966</eisbn><abstract>In numerous neuroscience studies, multichannel EEG data are often recorded over multiple trial periods under the same experimental condition. To date, little effort is aimed to learn spatial patterns from EEG data to account for trial-to-trial variability. In this paper, a hierarchical Bayesian framework is introduced to model inter-trial source variability while extracting common spatial patterns under multiple experimental conditions in a supervised manner. We also present a variational Bayesian algorithm for model inference, by which the number of sources can be determined effectively via automatic relevance determination (ARD). The efficacy of the proposed learning algorithm is validated with both synthetic and real EEG data. Using two brain-computer interface (BCI) motor imagery data sets we show the proposed algorithm consistently outperforms the common spatial patterns (CSP) algorithm while attaining comparable performance with a recently proposed discriminative approach.</abstract><pub>IEEE</pub><doi>10.1109/ICASSP.2010.5495663</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1520-6149
ispartof 2010 IEEE International Conference on Acoustics, Speech and Signal Processing, 2010, p.501-504
issn 1520-6149
2379-190X
language eng
recordid cdi_ieee_primary_5495663
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Assembly
Bayesian methods
Blind source separation
Brain modeling
Data mining
Electroencephalography
Independent component analysis
Inference algorithms
Neuroscience
Signal processing algorithms
title Hierarchical Bayesian modeling of inter-trial variability and variational Bayesian learning of common spatial patterns from multichannel EEG
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T17%3A09%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Hierarchical%20Bayesian%20modeling%20of%20inter-trial%20variability%20and%20variational%20Bayesian%20learning%20of%20common%20spatial%20patterns%20from%20multichannel%20EEG&rft.btitle=2010%20IEEE%20International%20Conference%20on%20Acoustics,%20Speech%20and%20Signal%20Processing&rft.au=Wei%20Wu&rft.date=2010-03&rft.spage=501&rft.epage=504&rft.pages=501-504&rft.issn=1520-6149&rft.eissn=2379-190X&rft.isbn=9781424442959&rft.isbn_list=1424442958&rft_id=info:doi/10.1109/ICASSP.2010.5495663&rft_dat=%3Cieee_6IE%3E5495663%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424442966&rft.eisbn_list=1424442966&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5495663&rfr_iscdi=true