Hierarchical Bayesian modeling of inter-trial variability and variational Bayesian learning of common spatial patterns from multichannel EEG
In numerous neuroscience studies, multichannel EEG data are often recorded over multiple trial periods under the same experimental condition. To date, little effort is aimed to learn spatial patterns from EEG data to account for trial-to-trial variability. In this paper, a hierarchical Bayesian fram...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 504 |
---|---|
container_issue | |
container_start_page | 501 |
container_title | |
container_volume | |
creator | Wei Wu Zhe Chen Shangkai Gao Brown, E N |
description | In numerous neuroscience studies, multichannel EEG data are often recorded over multiple trial periods under the same experimental condition. To date, little effort is aimed to learn spatial patterns from EEG data to account for trial-to-trial variability. In this paper, a hierarchical Bayesian framework is introduced to model inter-trial source variability while extracting common spatial patterns under multiple experimental conditions in a supervised manner. We also present a variational Bayesian algorithm for model inference, by which the number of sources can be determined effectively via automatic relevance determination (ARD). The efficacy of the proposed learning algorithm is validated with both synthetic and real EEG data. Using two brain-computer interface (BCI) motor imagery data sets we show the proposed algorithm consistently outperforms the common spatial patterns (CSP) algorithm while attaining comparable performance with a recently proposed discriminative approach. |
doi_str_mv | 10.1109/ICASSP.2010.5495663 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5495663</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5495663</ieee_id><sourcerecordid>5495663</sourcerecordid><originalsourceid>FETCH-LOGICAL-i220t-ce3c940c667944a3a442c8aab5afb0dec0e50a5d483769af4f9751dea0df73f03</originalsourceid><addsrcrecordid>eNpVkN1KAzEQheMfWGufoDd5ga2Tzc9uLrXUVigoVMG7Ms0mNrKbLdlV2HfwoQ20F3p1mJnvHJhDyJTBjDHQd0_z-83mZZZDWkihpVL8jEx0UTKRCyFyrdQ5GeW80BnT8H7x7yb1JRkxmUOmmNDX5KbrPgGgLEQ5Ij8rbyNGs_cGa_qAg-08Btq0la19-KCtoz70NmZ99An4xiQ7X_t-oBiq49z7Nvw11xZjOJlN2zRtoN0hUYlJksJCR11sG9p81b03ewzB1nSxWN6SK4d1ZycnHZO3x8XrfJWtn5epgnXm8xz6zFhutACjVKGFQI7pS1Mi7iS6HVTWgJWAshIlL5RGJ5wuJKssQuUK7oCPyfSY662120P0DcZheyqW_wJfcmyI</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Hierarchical Bayesian modeling of inter-trial variability and variational Bayesian learning of common spatial patterns from multichannel EEG</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Wei Wu ; Zhe Chen ; Shangkai Gao ; Brown, E N</creator><creatorcontrib>Wei Wu ; Zhe Chen ; Shangkai Gao ; Brown, E N</creatorcontrib><description>In numerous neuroscience studies, multichannel EEG data are often recorded over multiple trial periods under the same experimental condition. To date, little effort is aimed to learn spatial patterns from EEG data to account for trial-to-trial variability. In this paper, a hierarchical Bayesian framework is introduced to model inter-trial source variability while extracting common spatial patterns under multiple experimental conditions in a supervised manner. We also present a variational Bayesian algorithm for model inference, by which the number of sources can be determined effectively via automatic relevance determination (ARD). The efficacy of the proposed learning algorithm is validated with both synthetic and real EEG data. Using two brain-computer interface (BCI) motor imagery data sets we show the proposed algorithm consistently outperforms the common spatial patterns (CSP) algorithm while attaining comparable performance with a recently proposed discriminative approach.</description><identifier>ISSN: 1520-6149</identifier><identifier>ISBN: 9781424442959</identifier><identifier>ISBN: 1424442958</identifier><identifier>EISSN: 2379-190X</identifier><identifier>EISBN: 9781424442966</identifier><identifier>EISBN: 1424442966</identifier><identifier>DOI: 10.1109/ICASSP.2010.5495663</identifier><language>eng</language><publisher>IEEE</publisher><subject>Assembly ; Bayesian methods ; Blind source separation ; Brain modeling ; Data mining ; Electroencephalography ; Independent component analysis ; Inference algorithms ; Neuroscience ; Signal processing algorithms</subject><ispartof>2010 IEEE International Conference on Acoustics, Speech and Signal Processing, 2010, p.501-504</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5495663$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>310,311,781,785,790,791,2059,27929,54924</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5495663$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wei Wu</creatorcontrib><creatorcontrib>Zhe Chen</creatorcontrib><creatorcontrib>Shangkai Gao</creatorcontrib><creatorcontrib>Brown, E N</creatorcontrib><title>Hierarchical Bayesian modeling of inter-trial variability and variational Bayesian learning of common spatial patterns from multichannel EEG</title><title>2010 IEEE International Conference on Acoustics, Speech and Signal Processing</title><addtitle>ICASSP</addtitle><description>In numerous neuroscience studies, multichannel EEG data are often recorded over multiple trial periods under the same experimental condition. To date, little effort is aimed to learn spatial patterns from EEG data to account for trial-to-trial variability. In this paper, a hierarchical Bayesian framework is introduced to model inter-trial source variability while extracting common spatial patterns under multiple experimental conditions in a supervised manner. We also present a variational Bayesian algorithm for model inference, by which the number of sources can be determined effectively via automatic relevance determination (ARD). The efficacy of the proposed learning algorithm is validated with both synthetic and real EEG data. Using two brain-computer interface (BCI) motor imagery data sets we show the proposed algorithm consistently outperforms the common spatial patterns (CSP) algorithm while attaining comparable performance with a recently proposed discriminative approach.</description><subject>Assembly</subject><subject>Bayesian methods</subject><subject>Blind source separation</subject><subject>Brain modeling</subject><subject>Data mining</subject><subject>Electroencephalography</subject><subject>Independent component analysis</subject><subject>Inference algorithms</subject><subject>Neuroscience</subject><subject>Signal processing algorithms</subject><issn>1520-6149</issn><issn>2379-190X</issn><isbn>9781424442959</isbn><isbn>1424442958</isbn><isbn>9781424442966</isbn><isbn>1424442966</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVkN1KAzEQheMfWGufoDd5ga2Tzc9uLrXUVigoVMG7Ms0mNrKbLdlV2HfwoQ20F3p1mJnvHJhDyJTBjDHQd0_z-83mZZZDWkihpVL8jEx0UTKRCyFyrdQ5GeW80BnT8H7x7yb1JRkxmUOmmNDX5KbrPgGgLEQ5Ij8rbyNGs_cGa_qAg-08Btq0la19-KCtoz70NmZ99An4xiQ7X_t-oBiq49z7Nvw11xZjOJlN2zRtoN0hUYlJksJCR11sG9p81b03ewzB1nSxWN6SK4d1ZycnHZO3x8XrfJWtn5epgnXm8xz6zFhutACjVKGFQI7pS1Mi7iS6HVTWgJWAshIlL5RGJ5wuJKssQuUK7oCPyfSY662120P0DcZheyqW_wJfcmyI</recordid><startdate>201003</startdate><enddate>201003</enddate><creator>Wei Wu</creator><creator>Zhe Chen</creator><creator>Shangkai Gao</creator><creator>Brown, E N</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201003</creationdate><title>Hierarchical Bayesian modeling of inter-trial variability and variational Bayesian learning of common spatial patterns from multichannel EEG</title><author>Wei Wu ; Zhe Chen ; Shangkai Gao ; Brown, E N</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i220t-ce3c940c667944a3a442c8aab5afb0dec0e50a5d483769af4f9751dea0df73f03</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Assembly</topic><topic>Bayesian methods</topic><topic>Blind source separation</topic><topic>Brain modeling</topic><topic>Data mining</topic><topic>Electroencephalography</topic><topic>Independent component analysis</topic><topic>Inference algorithms</topic><topic>Neuroscience</topic><topic>Signal processing algorithms</topic><toplevel>online_resources</toplevel><creatorcontrib>Wei Wu</creatorcontrib><creatorcontrib>Zhe Chen</creatorcontrib><creatorcontrib>Shangkai Gao</creatorcontrib><creatorcontrib>Brown, E N</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wei Wu</au><au>Zhe Chen</au><au>Shangkai Gao</au><au>Brown, E N</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Hierarchical Bayesian modeling of inter-trial variability and variational Bayesian learning of common spatial patterns from multichannel EEG</atitle><btitle>2010 IEEE International Conference on Acoustics, Speech and Signal Processing</btitle><stitle>ICASSP</stitle><date>2010-03</date><risdate>2010</risdate><spage>501</spage><epage>504</epage><pages>501-504</pages><issn>1520-6149</issn><eissn>2379-190X</eissn><isbn>9781424442959</isbn><isbn>1424442958</isbn><eisbn>9781424442966</eisbn><eisbn>1424442966</eisbn><abstract>In numerous neuroscience studies, multichannel EEG data are often recorded over multiple trial periods under the same experimental condition. To date, little effort is aimed to learn spatial patterns from EEG data to account for trial-to-trial variability. In this paper, a hierarchical Bayesian framework is introduced to model inter-trial source variability while extracting common spatial patterns under multiple experimental conditions in a supervised manner. We also present a variational Bayesian algorithm for model inference, by which the number of sources can be determined effectively via automatic relevance determination (ARD). The efficacy of the proposed learning algorithm is validated with both synthetic and real EEG data. Using two brain-computer interface (BCI) motor imagery data sets we show the proposed algorithm consistently outperforms the common spatial patterns (CSP) algorithm while attaining comparable performance with a recently proposed discriminative approach.</abstract><pub>IEEE</pub><doi>10.1109/ICASSP.2010.5495663</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1520-6149 |
ispartof | 2010 IEEE International Conference on Acoustics, Speech and Signal Processing, 2010, p.501-504 |
issn | 1520-6149 2379-190X |
language | eng |
recordid | cdi_ieee_primary_5495663 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Assembly Bayesian methods Blind source separation Brain modeling Data mining Electroencephalography Independent component analysis Inference algorithms Neuroscience Signal processing algorithms |
title | Hierarchical Bayesian modeling of inter-trial variability and variational Bayesian learning of common spatial patterns from multichannel EEG |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T17%3A09%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Hierarchical%20Bayesian%20modeling%20of%20inter-trial%20variability%20and%20variational%20Bayesian%20learning%20of%20common%20spatial%20patterns%20from%20multichannel%20EEG&rft.btitle=2010%20IEEE%20International%20Conference%20on%20Acoustics,%20Speech%20and%20Signal%20Processing&rft.au=Wei%20Wu&rft.date=2010-03&rft.spage=501&rft.epage=504&rft.pages=501-504&rft.issn=1520-6149&rft.eissn=2379-190X&rft.isbn=9781424442959&rft.isbn_list=1424442958&rft_id=info:doi/10.1109/ICASSP.2010.5495663&rft_dat=%3Cieee_6IE%3E5495663%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424442966&rft.eisbn_list=1424442966&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5495663&rfr_iscdi=true |