Multilingual acoustic modeling for speech recognition based on subspace Gaussian Mixture Models

Although research has previously been done on multilingual speech recognition, it has been found to be very difficult to improve over separately trained systems. The usual approach has been to use some kind of "universal phone set" that covers multiple languages. We report experiments on a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Burget, L, Schwarz, P, Agarwal, M, Akyazi, P, Kai Feng, Ghoshal, A, Glembek, O, Goel, N, Karafiát, M, Povey, D, Rastrow, A, Rose, R C, Thomas, S
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4337
container_issue
container_start_page 4334
container_title
container_volume
creator Burget, L
Schwarz, P
Agarwal, M
Akyazi, P
Kai Feng
Ghoshal, A
Glembek, O
Goel, N
Karafiát, M
Povey, D
Rastrow, A
Rose, R C
Thomas, S
description Although research has previously been done on multilingual speech recognition, it has been found to be very difficult to improve over separately trained systems. The usual approach has been to use some kind of "universal phone set" that covers multiple languages. We report experiments on a different approach to multilingual speech recognition, in which the phone sets are entirely distinct but the model has parameters not tied to specific states that are shared across languages. We use a model called a "Subspace Gaussian Mixture Model" where states' distributions are Gaussian Mixture Models with a common structure, constrained to lie in a subspace of the total parameter space. The parameters that define this subspace can be shared across languages. We obtain substantial WER improvements with this approach, especially with very small amounts of in-language training data.
doi_str_mv 10.1109/ICASSP.2010.5495646
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5495646</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5495646</ieee_id><sourcerecordid>5495646</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-33b4b2a33fa539442e989794c765337579be3ca2fafd8e3976533e5f74fc32923</originalsourceid><addsrcrecordid>eNpVkN1KAzEQRuMfWGufoDd5ga1JJtnsXErRKrQoVMG7kk0nNbLdLZtd0Ld3q9549Q1n4DDzMTaVYialwJvH-e16_TxTYgBGo8l1fsImaAupldZaYZ6fspECi5lE8Xb2b2fwnI2kUSLLpcZLdpXShxCisLoYsc2qr7pYxXrXu4o73_Spi57vmy0dIQ9Ny9OByL_zlnyzq2MXm5qXLtGWD0Pqy3RwnvjC9SlFV_NV_Oz6lvjqqEjX7CK4KtHkL8fs9f7uZf6QLZ8Ww1fLLEprugyg1KVyAMEZwOFqwgItam9zA2CNxZLAOxVc2BYE-IPJBKuDB4UKxmz6641EtDm0ce_ar81fV_ANOsVaiA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Multilingual acoustic modeling for speech recognition based on subspace Gaussian Mixture Models</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Burget, L ; Schwarz, P ; Agarwal, M ; Akyazi, P ; Kai Feng ; Ghoshal, A ; Glembek, O ; Goel, N ; Karafiát, M ; Povey, D ; Rastrow, A ; Rose, R C ; Thomas, S</creator><creatorcontrib>Burget, L ; Schwarz, P ; Agarwal, M ; Akyazi, P ; Kai Feng ; Ghoshal, A ; Glembek, O ; Goel, N ; Karafiát, M ; Povey, D ; Rastrow, A ; Rose, R C ; Thomas, S</creatorcontrib><description>Although research has previously been done on multilingual speech recognition, it has been found to be very difficult to improve over separately trained systems. The usual approach has been to use some kind of "universal phone set" that covers multiple languages. We report experiments on a different approach to multilingual speech recognition, in which the phone sets are entirely distinct but the model has parameters not tied to specific states that are shared across languages. We use a model called a "Subspace Gaussian Mixture Model" where states' distributions are Gaussian Mixture Models with a common structure, constrained to lie in a subspace of the total parameter space. The parameters that define this subspace can be shared across languages. We obtain substantial WER improvements with this approach, especially with very small amounts of in-language training data.</description><identifier>ISSN: 1520-6149</identifier><identifier>ISBN: 9781424442959</identifier><identifier>ISBN: 1424442958</identifier><identifier>EISSN: 2379-190X</identifier><identifier>EISBN: 9781424442966</identifier><identifier>EISBN: 1424442966</identifier><identifier>DOI: 10.1109/ICASSP.2010.5495646</identifier><language>eng</language><publisher>IEEE</publisher><subject>Automatic speech recognition ; Availability ; Hidden Markov models ; Humans ; Large vocabulary speech recognition ; Multilingual acoustic modeling ; Natural languages ; Robustness ; Space technology ; Speech recognition ; Subspace constraints ; Subspace Gaussian mixture model ; Training data</subject><ispartof>2010 IEEE International Conference on Acoustics, Speech and Signal Processing, 2010, p.4334-4337</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5495646$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5495646$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Burget, L</creatorcontrib><creatorcontrib>Schwarz, P</creatorcontrib><creatorcontrib>Agarwal, M</creatorcontrib><creatorcontrib>Akyazi, P</creatorcontrib><creatorcontrib>Kai Feng</creatorcontrib><creatorcontrib>Ghoshal, A</creatorcontrib><creatorcontrib>Glembek, O</creatorcontrib><creatorcontrib>Goel, N</creatorcontrib><creatorcontrib>Karafiát, M</creatorcontrib><creatorcontrib>Povey, D</creatorcontrib><creatorcontrib>Rastrow, A</creatorcontrib><creatorcontrib>Rose, R C</creatorcontrib><creatorcontrib>Thomas, S</creatorcontrib><title>Multilingual acoustic modeling for speech recognition based on subspace Gaussian Mixture Models</title><title>2010 IEEE International Conference on Acoustics, Speech and Signal Processing</title><addtitle>ICASSP</addtitle><description>Although research has previously been done on multilingual speech recognition, it has been found to be very difficult to improve over separately trained systems. The usual approach has been to use some kind of "universal phone set" that covers multiple languages. We report experiments on a different approach to multilingual speech recognition, in which the phone sets are entirely distinct but the model has parameters not tied to specific states that are shared across languages. We use a model called a "Subspace Gaussian Mixture Model" where states' distributions are Gaussian Mixture Models with a common structure, constrained to lie in a subspace of the total parameter space. The parameters that define this subspace can be shared across languages. We obtain substantial WER improvements with this approach, especially with very small amounts of in-language training data.</description><subject>Automatic speech recognition</subject><subject>Availability</subject><subject>Hidden Markov models</subject><subject>Humans</subject><subject>Large vocabulary speech recognition</subject><subject>Multilingual acoustic modeling</subject><subject>Natural languages</subject><subject>Robustness</subject><subject>Space technology</subject><subject>Speech recognition</subject><subject>Subspace constraints</subject><subject>Subspace Gaussian mixture model</subject><subject>Training data</subject><issn>1520-6149</issn><issn>2379-190X</issn><isbn>9781424442959</isbn><isbn>1424442958</isbn><isbn>9781424442966</isbn><isbn>1424442966</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVkN1KAzEQRuMfWGufoDd5ga1JJtnsXErRKrQoVMG7kk0nNbLdLZtd0Ld3q9549Q1n4DDzMTaVYialwJvH-e16_TxTYgBGo8l1fsImaAupldZaYZ6fspECi5lE8Xb2b2fwnI2kUSLLpcZLdpXShxCisLoYsc2qr7pYxXrXu4o73_Spi57vmy0dIQ9Ny9OByL_zlnyzq2MXm5qXLtGWD0Pqy3RwnvjC9SlFV_NV_Oz6lvjqqEjX7CK4KtHkL8fs9f7uZf6QLZ8Ww1fLLEprugyg1KVyAMEZwOFqwgItam9zA2CNxZLAOxVc2BYE-IPJBKuDB4UKxmz6641EtDm0ce_ar81fV_ANOsVaiA</recordid><startdate>201003</startdate><enddate>201003</enddate><creator>Burget, L</creator><creator>Schwarz, P</creator><creator>Agarwal, M</creator><creator>Akyazi, P</creator><creator>Kai Feng</creator><creator>Ghoshal, A</creator><creator>Glembek, O</creator><creator>Goel, N</creator><creator>Karafiát, M</creator><creator>Povey, D</creator><creator>Rastrow, A</creator><creator>Rose, R C</creator><creator>Thomas, S</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201003</creationdate><title>Multilingual acoustic modeling for speech recognition based on subspace Gaussian Mixture Models</title><author>Burget, L ; Schwarz, P ; Agarwal, M ; Akyazi, P ; Kai Feng ; Ghoshal, A ; Glembek, O ; Goel, N ; Karafiát, M ; Povey, D ; Rastrow, A ; Rose, R C ; Thomas, S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-33b4b2a33fa539442e989794c765337579be3ca2fafd8e3976533e5f74fc32923</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Automatic speech recognition</topic><topic>Availability</topic><topic>Hidden Markov models</topic><topic>Humans</topic><topic>Large vocabulary speech recognition</topic><topic>Multilingual acoustic modeling</topic><topic>Natural languages</topic><topic>Robustness</topic><topic>Space technology</topic><topic>Speech recognition</topic><topic>Subspace constraints</topic><topic>Subspace Gaussian mixture model</topic><topic>Training data</topic><toplevel>online_resources</toplevel><creatorcontrib>Burget, L</creatorcontrib><creatorcontrib>Schwarz, P</creatorcontrib><creatorcontrib>Agarwal, M</creatorcontrib><creatorcontrib>Akyazi, P</creatorcontrib><creatorcontrib>Kai Feng</creatorcontrib><creatorcontrib>Ghoshal, A</creatorcontrib><creatorcontrib>Glembek, O</creatorcontrib><creatorcontrib>Goel, N</creatorcontrib><creatorcontrib>Karafiát, M</creatorcontrib><creatorcontrib>Povey, D</creatorcontrib><creatorcontrib>Rastrow, A</creatorcontrib><creatorcontrib>Rose, R C</creatorcontrib><creatorcontrib>Thomas, S</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Burget, L</au><au>Schwarz, P</au><au>Agarwal, M</au><au>Akyazi, P</au><au>Kai Feng</au><au>Ghoshal, A</au><au>Glembek, O</au><au>Goel, N</au><au>Karafiát, M</au><au>Povey, D</au><au>Rastrow, A</au><au>Rose, R C</au><au>Thomas, S</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Multilingual acoustic modeling for speech recognition based on subspace Gaussian Mixture Models</atitle><btitle>2010 IEEE International Conference on Acoustics, Speech and Signal Processing</btitle><stitle>ICASSP</stitle><date>2010-03</date><risdate>2010</risdate><spage>4334</spage><epage>4337</epage><pages>4334-4337</pages><issn>1520-6149</issn><eissn>2379-190X</eissn><isbn>9781424442959</isbn><isbn>1424442958</isbn><eisbn>9781424442966</eisbn><eisbn>1424442966</eisbn><abstract>Although research has previously been done on multilingual speech recognition, it has been found to be very difficult to improve over separately trained systems. The usual approach has been to use some kind of "universal phone set" that covers multiple languages. We report experiments on a different approach to multilingual speech recognition, in which the phone sets are entirely distinct but the model has parameters not tied to specific states that are shared across languages. We use a model called a "Subspace Gaussian Mixture Model" where states' distributions are Gaussian Mixture Models with a common structure, constrained to lie in a subspace of the total parameter space. The parameters that define this subspace can be shared across languages. We obtain substantial WER improvements with this approach, especially with very small amounts of in-language training data.</abstract><pub>IEEE</pub><doi>10.1109/ICASSP.2010.5495646</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1520-6149
ispartof 2010 IEEE International Conference on Acoustics, Speech and Signal Processing, 2010, p.4334-4337
issn 1520-6149
2379-190X
language eng
recordid cdi_ieee_primary_5495646
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Automatic speech recognition
Availability
Hidden Markov models
Humans
Large vocabulary speech recognition
Multilingual acoustic modeling
Natural languages
Robustness
Space technology
Speech recognition
Subspace constraints
Subspace Gaussian mixture model
Training data
title Multilingual acoustic modeling for speech recognition based on subspace Gaussian Mixture Models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T19%3A09%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Multilingual%20acoustic%20modeling%20for%20speech%20recognition%20based%20on%20subspace%20Gaussian%20Mixture%20Models&rft.btitle=2010%20IEEE%20International%20Conference%20on%20Acoustics,%20Speech%20and%20Signal%20Processing&rft.au=Burget,%20L&rft.date=2010-03&rft.spage=4334&rft.epage=4337&rft.pages=4334-4337&rft.issn=1520-6149&rft.eissn=2379-190X&rft.isbn=9781424442959&rft.isbn_list=1424442958&rft_id=info:doi/10.1109/ICASSP.2010.5495646&rft_dat=%3Cieee_6IE%3E5495646%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424442966&rft.eisbn_list=1424442966&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5495646&rfr_iscdi=true