Forensics aided steganalysis of heterogeneous images

We tackle the problem of the steganalysis of images produced by different sources. We first use a classifier to try to understand the image source and then use a version of the steganalyzer that has been explicitly trained to work with images belonging to the correct class. These classifiers are wid...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Barni, M, Cancelli, G, Esposito, A
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1693
container_issue
container_start_page 1690
container_title
container_volume
creator Barni, M
Cancelli, G
Esposito, A
description We tackle the problem of the steganalysis of images produced by different sources. We first use a classifier to try to understand the image source and then use a version of the steganalyzer that has been explicitly trained to work with images belonging to the correct class. These classifiers are widely available from the image forensics literature and have reached a good level of maturity hence making the proposed approach feasible. We tested the goodness of our approach on a case study in which a steganalyzer is asked to analyze both computer generated and camera images. The results we obtained are promising encouraging further research in this direction.
doi_str_mv 10.1109/ICASSP.2010.5495494
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5495494</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5495494</ieee_id><sourcerecordid>5495494</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-a7a5ca6dfe30be1b69cd96cb73d14343a4b94c0b0a01056ff8f9d0f685ff0ebd3</originalsourceid><addsrcrecordid>eNpVUF1Lw0AQPL_AWPsL-pI_kLqX27vLPkqxVSgoVMG3cpfbi5GaSC4-9N8bsC_CwMAMzO6MEAsJSymB7p5W97vdy7KESdBIE_BMzMlWEktELMmYc5GVylIhCd4v_nmaLkUmdQmFkUjX4ialTwCoLFaZwHU_cJfaOuWuDRzyNHLjOnc4pjblfcw_eOShb7jj_ifl7ZdrON2Kq-gOiecnnom39cPr6rHYPm-mV7dFK60eC2edrp0JkRV4lt5QHcjU3qogUaFy6Alr8OCmXtrEWEUKEE2lYwT2Qc3E4i-3Zeb99zBdH4770wDqF09pTBA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Forensics aided steganalysis of heterogeneous images</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Barni, M ; Cancelli, G ; Esposito, A</creator><creatorcontrib>Barni, M ; Cancelli, G ; Esposito, A</creatorcontrib><description>We tackle the problem of the steganalysis of images produced by different sources. We first use a classifier to try to understand the image source and then use a version of the steganalyzer that has been explicitly trained to work with images belonging to the correct class. These classifiers are widely available from the image forensics literature and have reached a good level of maturity hence making the proposed approach feasible. We tested the goodness of our approach on a case study in which a steganalyzer is asked to analyze both computer generated and camera images. The results we obtained are promising encouraging further research in this direction.</description><identifier>ISSN: 1520-6149</identifier><identifier>ISBN: 9781424442959</identifier><identifier>ISBN: 1424442958</identifier><identifier>EISSN: 2379-190X</identifier><identifier>EISBN: 9781424442966</identifier><identifier>EISBN: 1424442966</identifier><identifier>DOI: 10.1109/ICASSP.2010.5495494</identifier><language>eng</language><publisher>IEEE</publisher><subject>Calibration ; Cameras ; Error probability ; Forensics ; Image analysis ; Image forensics ; Image generation ; JPEG steganography ; Statistical analysis ; Statistics ; Steganalysis ; Steganography ; Testing</subject><ispartof>2010 IEEE International Conference on Acoustics, Speech and Signal Processing, 2010, p.1690-1693</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5495494$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,27924,54919</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5495494$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Barni, M</creatorcontrib><creatorcontrib>Cancelli, G</creatorcontrib><creatorcontrib>Esposito, A</creatorcontrib><title>Forensics aided steganalysis of heterogeneous images</title><title>2010 IEEE International Conference on Acoustics, Speech and Signal Processing</title><addtitle>ICASSP</addtitle><description>We tackle the problem of the steganalysis of images produced by different sources. We first use a classifier to try to understand the image source and then use a version of the steganalyzer that has been explicitly trained to work with images belonging to the correct class. These classifiers are widely available from the image forensics literature and have reached a good level of maturity hence making the proposed approach feasible. We tested the goodness of our approach on a case study in which a steganalyzer is asked to analyze both computer generated and camera images. The results we obtained are promising encouraging further research in this direction.</description><subject>Calibration</subject><subject>Cameras</subject><subject>Error probability</subject><subject>Forensics</subject><subject>Image analysis</subject><subject>Image forensics</subject><subject>Image generation</subject><subject>JPEG steganography</subject><subject>Statistical analysis</subject><subject>Statistics</subject><subject>Steganalysis</subject><subject>Steganography</subject><subject>Testing</subject><issn>1520-6149</issn><issn>2379-190X</issn><isbn>9781424442959</isbn><isbn>1424442958</isbn><isbn>9781424442966</isbn><isbn>1424442966</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVUF1Lw0AQPL_AWPsL-pI_kLqX27vLPkqxVSgoVMG3cpfbi5GaSC4-9N8bsC_CwMAMzO6MEAsJSymB7p5W97vdy7KESdBIE_BMzMlWEktELMmYc5GVylIhCd4v_nmaLkUmdQmFkUjX4ialTwCoLFaZwHU_cJfaOuWuDRzyNHLjOnc4pjblfcw_eOShb7jj_ifl7ZdrON2Kq-gOiecnnom39cPr6rHYPm-mV7dFK60eC2edrp0JkRV4lt5QHcjU3qogUaFy6Alr8OCmXtrEWEUKEE2lYwT2Qc3E4i-3Zeb99zBdH4770wDqF09pTBA</recordid><startdate>201003</startdate><enddate>201003</enddate><creator>Barni, M</creator><creator>Cancelli, G</creator><creator>Esposito, A</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201003</creationdate><title>Forensics aided steganalysis of heterogeneous images</title><author>Barni, M ; Cancelli, G ; Esposito, A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-a7a5ca6dfe30be1b69cd96cb73d14343a4b94c0b0a01056ff8f9d0f685ff0ebd3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Calibration</topic><topic>Cameras</topic><topic>Error probability</topic><topic>Forensics</topic><topic>Image analysis</topic><topic>Image forensics</topic><topic>Image generation</topic><topic>JPEG steganography</topic><topic>Statistical analysis</topic><topic>Statistics</topic><topic>Steganalysis</topic><topic>Steganography</topic><topic>Testing</topic><toplevel>online_resources</toplevel><creatorcontrib>Barni, M</creatorcontrib><creatorcontrib>Cancelli, G</creatorcontrib><creatorcontrib>Esposito, A</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Barni, M</au><au>Cancelli, G</au><au>Esposito, A</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Forensics aided steganalysis of heterogeneous images</atitle><btitle>2010 IEEE International Conference on Acoustics, Speech and Signal Processing</btitle><stitle>ICASSP</stitle><date>2010-03</date><risdate>2010</risdate><spage>1690</spage><epage>1693</epage><pages>1690-1693</pages><issn>1520-6149</issn><eissn>2379-190X</eissn><isbn>9781424442959</isbn><isbn>1424442958</isbn><eisbn>9781424442966</eisbn><eisbn>1424442966</eisbn><abstract>We tackle the problem of the steganalysis of images produced by different sources. We first use a classifier to try to understand the image source and then use a version of the steganalyzer that has been explicitly trained to work with images belonging to the correct class. These classifiers are widely available from the image forensics literature and have reached a good level of maturity hence making the proposed approach feasible. We tested the goodness of our approach on a case study in which a steganalyzer is asked to analyze both computer generated and camera images. The results we obtained are promising encouraging further research in this direction.</abstract><pub>IEEE</pub><doi>10.1109/ICASSP.2010.5495494</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1520-6149
ispartof 2010 IEEE International Conference on Acoustics, Speech and Signal Processing, 2010, p.1690-1693
issn 1520-6149
2379-190X
language eng
recordid cdi_ieee_primary_5495494
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Calibration
Cameras
Error probability
Forensics
Image analysis
Image forensics
Image generation
JPEG steganography
Statistical analysis
Statistics
Steganalysis
Steganography
Testing
title Forensics aided steganalysis of heterogeneous images
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T16%3A09%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Forensics%20aided%20steganalysis%20of%20heterogeneous%20images&rft.btitle=2010%20IEEE%20International%20Conference%20on%20Acoustics,%20Speech%20and%20Signal%20Processing&rft.au=Barni,%20M&rft.date=2010-03&rft.spage=1690&rft.epage=1693&rft.pages=1690-1693&rft.issn=1520-6149&rft.eissn=2379-190X&rft.isbn=9781424442959&rft.isbn_list=1424442958&rft_id=info:doi/10.1109/ICASSP.2010.5495494&rft_dat=%3Cieee_6IE%3E5495494%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424442966&rft.eisbn_list=1424442966&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5495494&rfr_iscdi=true