Forensics aided steganalysis of heterogeneous images
We tackle the problem of the steganalysis of images produced by different sources. We first use a classifier to try to understand the image source and then use a version of the steganalyzer that has been explicitly trained to work with images belonging to the correct class. These classifiers are wid...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1693 |
---|---|
container_issue | |
container_start_page | 1690 |
container_title | |
container_volume | |
creator | Barni, M Cancelli, G Esposito, A |
description | We tackle the problem of the steganalysis of images produced by different sources. We first use a classifier to try to understand the image source and then use a version of the steganalyzer that has been explicitly trained to work with images belonging to the correct class. These classifiers are widely available from the image forensics literature and have reached a good level of maturity hence making the proposed approach feasible. We tested the goodness of our approach on a case study in which a steganalyzer is asked to analyze both computer generated and camera images. The results we obtained are promising encouraging further research in this direction. |
doi_str_mv | 10.1109/ICASSP.2010.5495494 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5495494</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5495494</ieee_id><sourcerecordid>5495494</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-a7a5ca6dfe30be1b69cd96cb73d14343a4b94c0b0a01056ff8f9d0f685ff0ebd3</originalsourceid><addsrcrecordid>eNpVUF1Lw0AQPL_AWPsL-pI_kLqX27vLPkqxVSgoVMG3cpfbi5GaSC4-9N8bsC_CwMAMzO6MEAsJSymB7p5W97vdy7KESdBIE_BMzMlWEktELMmYc5GVylIhCd4v_nmaLkUmdQmFkUjX4ialTwCoLFaZwHU_cJfaOuWuDRzyNHLjOnc4pjblfcw_eOShb7jj_ifl7ZdrON2Kq-gOiecnnom39cPr6rHYPm-mV7dFK60eC2edrp0JkRV4lt5QHcjU3qogUaFy6Alr8OCmXtrEWEUKEE2lYwT2Qc3E4i-3Zeb99zBdH4770wDqF09pTBA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Forensics aided steganalysis of heterogeneous images</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Barni, M ; Cancelli, G ; Esposito, A</creator><creatorcontrib>Barni, M ; Cancelli, G ; Esposito, A</creatorcontrib><description>We tackle the problem of the steganalysis of images produced by different sources. We first use a classifier to try to understand the image source and then use a version of the steganalyzer that has been explicitly trained to work with images belonging to the correct class. These classifiers are widely available from the image forensics literature and have reached a good level of maturity hence making the proposed approach feasible. We tested the goodness of our approach on a case study in which a steganalyzer is asked to analyze both computer generated and camera images. The results we obtained are promising encouraging further research in this direction.</description><identifier>ISSN: 1520-6149</identifier><identifier>ISBN: 9781424442959</identifier><identifier>ISBN: 1424442958</identifier><identifier>EISSN: 2379-190X</identifier><identifier>EISBN: 9781424442966</identifier><identifier>EISBN: 1424442966</identifier><identifier>DOI: 10.1109/ICASSP.2010.5495494</identifier><language>eng</language><publisher>IEEE</publisher><subject>Calibration ; Cameras ; Error probability ; Forensics ; Image analysis ; Image forensics ; Image generation ; JPEG steganography ; Statistical analysis ; Statistics ; Steganalysis ; Steganography ; Testing</subject><ispartof>2010 IEEE International Conference on Acoustics, Speech and Signal Processing, 2010, p.1690-1693</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5495494$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,27924,54919</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5495494$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Barni, M</creatorcontrib><creatorcontrib>Cancelli, G</creatorcontrib><creatorcontrib>Esposito, A</creatorcontrib><title>Forensics aided steganalysis of heterogeneous images</title><title>2010 IEEE International Conference on Acoustics, Speech and Signal Processing</title><addtitle>ICASSP</addtitle><description>We tackle the problem of the steganalysis of images produced by different sources. We first use a classifier to try to understand the image source and then use a version of the steganalyzer that has been explicitly trained to work with images belonging to the correct class. These classifiers are widely available from the image forensics literature and have reached a good level of maturity hence making the proposed approach feasible. We tested the goodness of our approach on a case study in which a steganalyzer is asked to analyze both computer generated and camera images. The results we obtained are promising encouraging further research in this direction.</description><subject>Calibration</subject><subject>Cameras</subject><subject>Error probability</subject><subject>Forensics</subject><subject>Image analysis</subject><subject>Image forensics</subject><subject>Image generation</subject><subject>JPEG steganography</subject><subject>Statistical analysis</subject><subject>Statistics</subject><subject>Steganalysis</subject><subject>Steganography</subject><subject>Testing</subject><issn>1520-6149</issn><issn>2379-190X</issn><isbn>9781424442959</isbn><isbn>1424442958</isbn><isbn>9781424442966</isbn><isbn>1424442966</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVUF1Lw0AQPL_AWPsL-pI_kLqX27vLPkqxVSgoVMG3cpfbi5GaSC4-9N8bsC_CwMAMzO6MEAsJSymB7p5W97vdy7KESdBIE_BMzMlWEktELMmYc5GVylIhCd4v_nmaLkUmdQmFkUjX4ialTwCoLFaZwHU_cJfaOuWuDRzyNHLjOnc4pjblfcw_eOShb7jj_ifl7ZdrON2Kq-gOiecnnom39cPr6rHYPm-mV7dFK60eC2edrp0JkRV4lt5QHcjU3qogUaFy6Alr8OCmXtrEWEUKEE2lYwT2Qc3E4i-3Zeb99zBdH4770wDqF09pTBA</recordid><startdate>201003</startdate><enddate>201003</enddate><creator>Barni, M</creator><creator>Cancelli, G</creator><creator>Esposito, A</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201003</creationdate><title>Forensics aided steganalysis of heterogeneous images</title><author>Barni, M ; Cancelli, G ; Esposito, A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-a7a5ca6dfe30be1b69cd96cb73d14343a4b94c0b0a01056ff8f9d0f685ff0ebd3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Calibration</topic><topic>Cameras</topic><topic>Error probability</topic><topic>Forensics</topic><topic>Image analysis</topic><topic>Image forensics</topic><topic>Image generation</topic><topic>JPEG steganography</topic><topic>Statistical analysis</topic><topic>Statistics</topic><topic>Steganalysis</topic><topic>Steganography</topic><topic>Testing</topic><toplevel>online_resources</toplevel><creatorcontrib>Barni, M</creatorcontrib><creatorcontrib>Cancelli, G</creatorcontrib><creatorcontrib>Esposito, A</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Barni, M</au><au>Cancelli, G</au><au>Esposito, A</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Forensics aided steganalysis of heterogeneous images</atitle><btitle>2010 IEEE International Conference on Acoustics, Speech and Signal Processing</btitle><stitle>ICASSP</stitle><date>2010-03</date><risdate>2010</risdate><spage>1690</spage><epage>1693</epage><pages>1690-1693</pages><issn>1520-6149</issn><eissn>2379-190X</eissn><isbn>9781424442959</isbn><isbn>1424442958</isbn><eisbn>9781424442966</eisbn><eisbn>1424442966</eisbn><abstract>We tackle the problem of the steganalysis of images produced by different sources. We first use a classifier to try to understand the image source and then use a version of the steganalyzer that has been explicitly trained to work with images belonging to the correct class. These classifiers are widely available from the image forensics literature and have reached a good level of maturity hence making the proposed approach feasible. We tested the goodness of our approach on a case study in which a steganalyzer is asked to analyze both computer generated and camera images. The results we obtained are promising encouraging further research in this direction.</abstract><pub>IEEE</pub><doi>10.1109/ICASSP.2010.5495494</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1520-6149 |
ispartof | 2010 IEEE International Conference on Acoustics, Speech and Signal Processing, 2010, p.1690-1693 |
issn | 1520-6149 2379-190X |
language | eng |
recordid | cdi_ieee_primary_5495494 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Calibration Cameras Error probability Forensics Image analysis Image forensics Image generation JPEG steganography Statistical analysis Statistics Steganalysis Steganography Testing |
title | Forensics aided steganalysis of heterogeneous images |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T16%3A09%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Forensics%20aided%20steganalysis%20of%20heterogeneous%20images&rft.btitle=2010%20IEEE%20International%20Conference%20on%20Acoustics,%20Speech%20and%20Signal%20Processing&rft.au=Barni,%20M&rft.date=2010-03&rft.spage=1690&rft.epage=1693&rft.pages=1690-1693&rft.issn=1520-6149&rft.eissn=2379-190X&rft.isbn=9781424442959&rft.isbn_list=1424442958&rft_id=info:doi/10.1109/ICASSP.2010.5495494&rft_dat=%3Cieee_6IE%3E5495494%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424442966&rft.eisbn_list=1424442966&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5495494&rfr_iscdi=true |