Automatic acquisition device identification from speech recordings

In this paper we present a study on the automatic identification of acquisition devices when only access to the output speech recordings is possible. A statistical characterization of the frequency response of the device contextualized by the speech content is proposed. In particular, the intrinsic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Garcia-Romero, D, Espy-Wilson, C Y
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1809
container_issue
container_start_page 1806
container_title
container_volume
creator Garcia-Romero, D
Espy-Wilson, C Y
description In this paper we present a study on the automatic identification of acquisition devices when only access to the output speech recordings is possible. A statistical characterization of the frequency response of the device contextualized by the speech content is proposed. In particular, the intrinsic characteristics of the device are captured by a template, constructed by appending together the means of a Gaussian mixture trained on the device speech recordings. This study focuses on two classes of acquisition devices, namely, landline telephone handsets and microphones. Three publicly available databases are used to assess the performance of linear- and mel-scaled cepstral coefficients. A Support Vector Machine classifier was used to perform closed-set identification experiments. The results show classification accuracies higher than 90 percent among the eight telephone handsets and eight microphones tested.
doi_str_mv 10.1109/ICASSP.2010.5495407
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5495407</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5495407</ieee_id><sourcerecordid>5495407</sourcerecordid><originalsourceid>FETCH-LOGICAL-c225t-abeb3cca2772571175ee402a45bab22183c21c01fdaa6877f2383663ded47b6b3</originalsourceid><addsrcrecordid>eNpVkMtKA0EURNsXOMZ8QTbzAxP73n4vYzAqBBSi4C704462OJk4MxH8e4Nm46rgFByKYmwCfArA3dX9fLZaPU6R74GSTklujtjYGQsSpZTotD5mBQrjKnD85eRfp9wpK0AhrzRId84u-v6dc26NtAW7nu2GtvFDjqWPn7vc5yG3mzLRV45U5kSbIdc5-l9ad21T9lui-FZ2FNsu5c1rf8nOav_R0_iQI_a8uHma31XLh9v98GUVEdVQ-UBBxOjRGFQGwCgiydFLFXxABCsiQuRQJ--1NaZGYYXWIlGSJuggRmzy581EtN52ufHd9_pwh_gBQLBQjA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Automatic acquisition device identification from speech recordings</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Garcia-Romero, D ; Espy-Wilson, C Y</creator><creatorcontrib>Garcia-Romero, D ; Espy-Wilson, C Y</creatorcontrib><description>In this paper we present a study on the automatic identification of acquisition devices when only access to the output speech recordings is possible. A statistical characterization of the frequency response of the device contextualized by the speech content is proposed. In particular, the intrinsic characteristics of the device are captured by a template, constructed by appending together the means of a Gaussian mixture trained on the device speech recordings. This study focuses on two classes of acquisition devices, namely, landline telephone handsets and microphones. Three publicly available databases are used to assess the performance of linear- and mel-scaled cepstral coefficients. A Support Vector Machine classifier was used to perform closed-set identification experiments. The results show classification accuracies higher than 90 percent among the eight telephone handsets and eight microphones tested.</description><identifier>ISSN: 1520-6149</identifier><identifier>ISBN: 9781424442959</identifier><identifier>ISBN: 1424442958</identifier><identifier>EISSN: 2379-190X</identifier><identifier>EISBN: 9781424442966</identifier><identifier>EISBN: 1424442966</identifier><identifier>DOI: 10.1109/ICASSP.2010.5495407</identifier><language>eng</language><publisher>IEEE</publisher><subject>Cepstral analysis ; Digital speech forensics ; Frequency response ; Gaussian supervectors ; intrinsic fingerprint ; Microphones ; non-intrusive forensics ; Object recognition ; Speech ; Support vector machine classification ; Support vector machines ; Telephone sets ; Telephony</subject><ispartof>2010 IEEE International Conference on Acoustics, Speech and Signal Processing, 2010, p.1806-1809</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c225t-abeb3cca2772571175ee402a45bab22183c21c01fdaa6877f2383663ded47b6b3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5495407$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5495407$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Garcia-Romero, D</creatorcontrib><creatorcontrib>Espy-Wilson, C Y</creatorcontrib><title>Automatic acquisition device identification from speech recordings</title><title>2010 IEEE International Conference on Acoustics, Speech and Signal Processing</title><addtitle>ICASSP</addtitle><description>In this paper we present a study on the automatic identification of acquisition devices when only access to the output speech recordings is possible. A statistical characterization of the frequency response of the device contextualized by the speech content is proposed. In particular, the intrinsic characteristics of the device are captured by a template, constructed by appending together the means of a Gaussian mixture trained on the device speech recordings. This study focuses on two classes of acquisition devices, namely, landline telephone handsets and microphones. Three publicly available databases are used to assess the performance of linear- and mel-scaled cepstral coefficients. A Support Vector Machine classifier was used to perform closed-set identification experiments. The results show classification accuracies higher than 90 percent among the eight telephone handsets and eight microphones tested.</description><subject>Cepstral analysis</subject><subject>Digital speech forensics</subject><subject>Frequency response</subject><subject>Gaussian supervectors</subject><subject>intrinsic fingerprint</subject><subject>Microphones</subject><subject>non-intrusive forensics</subject><subject>Object recognition</subject><subject>Speech</subject><subject>Support vector machine classification</subject><subject>Support vector machines</subject><subject>Telephone sets</subject><subject>Telephony</subject><issn>1520-6149</issn><issn>2379-190X</issn><isbn>9781424442959</isbn><isbn>1424442958</isbn><isbn>9781424442966</isbn><isbn>1424442966</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVkMtKA0EURNsXOMZ8QTbzAxP73n4vYzAqBBSi4C704462OJk4MxH8e4Nm46rgFByKYmwCfArA3dX9fLZaPU6R74GSTklujtjYGQsSpZTotD5mBQrjKnD85eRfp9wpK0AhrzRId84u-v6dc26NtAW7nu2GtvFDjqWPn7vc5yG3mzLRV45U5kSbIdc5-l9ad21T9lui-FZ2FNsu5c1rf8nOav_R0_iQI_a8uHma31XLh9v98GUVEdVQ-UBBxOjRGFQGwCgiydFLFXxABCsiQuRQJ--1NaZGYYXWIlGSJuggRmzy581EtN52ufHd9_pwh_gBQLBQjA</recordid><startdate>201003</startdate><enddate>201003</enddate><creator>Garcia-Romero, D</creator><creator>Espy-Wilson, C Y</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201003</creationdate><title>Automatic acquisition device identification from speech recordings</title><author>Garcia-Romero, D ; Espy-Wilson, C Y</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c225t-abeb3cca2772571175ee402a45bab22183c21c01fdaa6877f2383663ded47b6b3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Cepstral analysis</topic><topic>Digital speech forensics</topic><topic>Frequency response</topic><topic>Gaussian supervectors</topic><topic>intrinsic fingerprint</topic><topic>Microphones</topic><topic>non-intrusive forensics</topic><topic>Object recognition</topic><topic>Speech</topic><topic>Support vector machine classification</topic><topic>Support vector machines</topic><topic>Telephone sets</topic><topic>Telephony</topic><toplevel>online_resources</toplevel><creatorcontrib>Garcia-Romero, D</creatorcontrib><creatorcontrib>Espy-Wilson, C Y</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Garcia-Romero, D</au><au>Espy-Wilson, C Y</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Automatic acquisition device identification from speech recordings</atitle><btitle>2010 IEEE International Conference on Acoustics, Speech and Signal Processing</btitle><stitle>ICASSP</stitle><date>2010-03</date><risdate>2010</risdate><spage>1806</spage><epage>1809</epage><pages>1806-1809</pages><issn>1520-6149</issn><eissn>2379-190X</eissn><isbn>9781424442959</isbn><isbn>1424442958</isbn><eisbn>9781424442966</eisbn><eisbn>1424442966</eisbn><abstract>In this paper we present a study on the automatic identification of acquisition devices when only access to the output speech recordings is possible. A statistical characterization of the frequency response of the device contextualized by the speech content is proposed. In particular, the intrinsic characteristics of the device are captured by a template, constructed by appending together the means of a Gaussian mixture trained on the device speech recordings. This study focuses on two classes of acquisition devices, namely, landline telephone handsets and microphones. Three publicly available databases are used to assess the performance of linear- and mel-scaled cepstral coefficients. A Support Vector Machine classifier was used to perform closed-set identification experiments. The results show classification accuracies higher than 90 percent among the eight telephone handsets and eight microphones tested.</abstract><pub>IEEE</pub><doi>10.1109/ICASSP.2010.5495407</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1520-6149
ispartof 2010 IEEE International Conference on Acoustics, Speech and Signal Processing, 2010, p.1806-1809
issn 1520-6149
2379-190X
language eng
recordid cdi_ieee_primary_5495407
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Cepstral analysis
Digital speech forensics
Frequency response
Gaussian supervectors
intrinsic fingerprint
Microphones
non-intrusive forensics
Object recognition
Speech
Support vector machine classification
Support vector machines
Telephone sets
Telephony
title Automatic acquisition device identification from speech recordings
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T04%3A23%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Automatic%20acquisition%20device%20identification%20from%20speech%20recordings&rft.btitle=2010%20IEEE%20International%20Conference%20on%20Acoustics,%20Speech%20and%20Signal%20Processing&rft.au=Garcia-Romero,%20D&rft.date=2010-03&rft.spage=1806&rft.epage=1809&rft.pages=1806-1809&rft.issn=1520-6149&rft.eissn=2379-190X&rft.isbn=9781424442959&rft.isbn_list=1424442958&rft_id=info:doi/10.1109/ICASSP.2010.5495407&rft_dat=%3Cieee_6IE%3E5495407%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424442966&rft.eisbn_list=1424442966&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5495407&rfr_iscdi=true