A union of incoherent spaces model for classification
We present a new and computationally efficient scheme for classifying signals into a fixed number of known classes. We model classes as subspaces in which the corresponding data is well represented by a dictionary of features. In order to ensure low misclassification, the subspaces should be incoher...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5493 |
---|---|
container_issue | |
container_start_page | 5490 |
container_title | |
container_volume | |
creator | Schnass, K Vandergheynst, P |
description | We present a new and computationally efficient scheme for classifying signals into a fixed number of known classes. We model classes as subspaces in which the corresponding data is well represented by a dictionary of features. In order to ensure low misclassification, the subspaces should be incoherent so that features of a given class cannot represent efficiently signals from another. We propose a simple iterative strategy to learn dictionaries which are are the same time good for approximating within a class and also discriminant. Preliminary tests on a standard face images database show competitive results. |
doi_str_mv | 10.1109/ICASSP.2010.5495208 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>hal_6IE</sourceid><recordid>TN_cdi_ieee_primary_5495208</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5495208</ieee_id><sourcerecordid>oai_HAL_inria_00568895v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-h256t-636cf544c39dd98a7a62b8583cac3cca6105f57e89435e5e3e96e4ca136575e43</originalsourceid><addsrcrecordid>eNpVkEtLA0EQhMcXGGN-QS5zl43z6tnpYwi-IKAQBW9LO-klI5vdsBMF_70LCYKngqqvmqaEmGo101rh7dNivlq9zIwaDHAIRoUTMcEyaGeccwa9PxUjY0ssNKr3s38Z4LkY6aFTeO3wUlzl_KmUCqULIwFz-dWmrpVdLVMbuw333O5l3lHkLLfdmhtZd72MDeWc6hRpP9DX4qKmJvPkqGPxdn_3ungsls8Pw6_LYmPA7wtvfazBuWhxvcZAJXnzESDYSNHGSF4rqKHkgM4CA1tGzy6Sth5KYGfH4uZwd0NNtevTlvqfqqNUPc6XVWr7RJVS4ENA-NYDPT3QiZn_8ONe9hfVhVku</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A union of incoherent spaces model for classification</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Schnass, K ; Vandergheynst, P</creator><creatorcontrib>Schnass, K ; Vandergheynst, P</creatorcontrib><description>We present a new and computationally efficient scheme for classifying signals into a fixed number of known classes. We model classes as subspaces in which the corresponding data is well represented by a dictionary of features. In order to ensure low misclassification, the subspaces should be incoherent so that features of a given class cannot represent efficiently signals from another. We propose a simple iterative strategy to learn dictionaries which are are the same time good for approximating within a class and also discriminant. Preliminary tests on a standard face images database show competitive results.</description><identifier>ISSN: 1520-6149</identifier><identifier>ISBN: 9781424442959</identifier><identifier>ISBN: 1424442958</identifier><identifier>EISSN: 2379-190X</identifier><identifier>EISBN: 9781424442966</identifier><identifier>EISBN: 1424442966</identifier><identifier>DOI: 10.1109/ICASSP.2010.5495208</identifier><language>eng</language><publisher>IEEE</publisher><subject>alternate projections ; classification ; Dictionaries ; dictionary learning ; feature selection ; Grassmannian manifolds ; Image databases ; Laboratories ; Signal processing ; Space technology ; subspace learning ; Testing ; Training data</subject><ispartof>2010 IEEE International Conference on Acoustics, Speech and Signal Processing, 2010, p.5490-5493</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5495208$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,885,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5495208$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://inria.hal.science/inria-00568895$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Schnass, K</creatorcontrib><creatorcontrib>Vandergheynst, P</creatorcontrib><title>A union of incoherent spaces model for classification</title><title>2010 IEEE International Conference on Acoustics, Speech and Signal Processing</title><addtitle>ICASSP</addtitle><description>We present a new and computationally efficient scheme for classifying signals into a fixed number of known classes. We model classes as subspaces in which the corresponding data is well represented by a dictionary of features. In order to ensure low misclassification, the subspaces should be incoherent so that features of a given class cannot represent efficiently signals from another. We propose a simple iterative strategy to learn dictionaries which are are the same time good for approximating within a class and also discriminant. Preliminary tests on a standard face images database show competitive results.</description><subject>alternate projections</subject><subject>classification</subject><subject>Dictionaries</subject><subject>dictionary learning</subject><subject>feature selection</subject><subject>Grassmannian manifolds</subject><subject>Image databases</subject><subject>Laboratories</subject><subject>Signal processing</subject><subject>Space technology</subject><subject>subspace learning</subject><subject>Testing</subject><subject>Training data</subject><issn>1520-6149</issn><issn>2379-190X</issn><isbn>9781424442959</isbn><isbn>1424442958</isbn><isbn>9781424442966</isbn><isbn>1424442966</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVkEtLA0EQhMcXGGN-QS5zl43z6tnpYwi-IKAQBW9LO-klI5vdsBMF_70LCYKngqqvmqaEmGo101rh7dNivlq9zIwaDHAIRoUTMcEyaGeccwa9PxUjY0ssNKr3s38Z4LkY6aFTeO3wUlzl_KmUCqULIwFz-dWmrpVdLVMbuw333O5l3lHkLLfdmhtZd72MDeWc6hRpP9DX4qKmJvPkqGPxdn_3ungsls8Pw6_LYmPA7wtvfazBuWhxvcZAJXnzESDYSNHGSF4rqKHkgM4CA1tGzy6Sth5KYGfH4uZwd0NNtevTlvqfqqNUPc6XVWr7RJVS4ENA-NYDPT3QiZn_8ONe9hfVhVku</recordid><startdate>20100101</startdate><enddate>20100101</enddate><creator>Schnass, K</creator><creator>Vandergheynst, P</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope><scope>1XC</scope></search><sort><creationdate>20100101</creationdate><title>A union of incoherent spaces model for classification</title><author>Schnass, K ; Vandergheynst, P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-h256t-636cf544c39dd98a7a62b8583cac3cca6105f57e89435e5e3e96e4ca136575e43</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>alternate projections</topic><topic>classification</topic><topic>Dictionaries</topic><topic>dictionary learning</topic><topic>feature selection</topic><topic>Grassmannian manifolds</topic><topic>Image databases</topic><topic>Laboratories</topic><topic>Signal processing</topic><topic>Space technology</topic><topic>subspace learning</topic><topic>Testing</topic><topic>Training data</topic><toplevel>online_resources</toplevel><creatorcontrib>Schnass, K</creatorcontrib><creatorcontrib>Vandergheynst, P</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection><collection>Hyper Article en Ligne (HAL)</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Schnass, K</au><au>Vandergheynst, P</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A union of incoherent spaces model for classification</atitle><btitle>2010 IEEE International Conference on Acoustics, Speech and Signal Processing</btitle><stitle>ICASSP</stitle><date>2010-01-01</date><risdate>2010</risdate><spage>5490</spage><epage>5493</epage><pages>5490-5493</pages><issn>1520-6149</issn><eissn>2379-190X</eissn><isbn>9781424442959</isbn><isbn>1424442958</isbn><eisbn>9781424442966</eisbn><eisbn>1424442966</eisbn><abstract>We present a new and computationally efficient scheme for classifying signals into a fixed number of known classes. We model classes as subspaces in which the corresponding data is well represented by a dictionary of features. In order to ensure low misclassification, the subspaces should be incoherent so that features of a given class cannot represent efficiently signals from another. We propose a simple iterative strategy to learn dictionaries which are are the same time good for approximating within a class and also discriminant. Preliminary tests on a standard face images database show competitive results.</abstract><pub>IEEE</pub><doi>10.1109/ICASSP.2010.5495208</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1520-6149 |
ispartof | 2010 IEEE International Conference on Acoustics, Speech and Signal Processing, 2010, p.5490-5493 |
issn | 1520-6149 2379-190X |
language | eng |
recordid | cdi_ieee_primary_5495208 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | alternate projections classification Dictionaries dictionary learning feature selection Grassmannian manifolds Image databases Laboratories Signal processing Space technology subspace learning Testing Training data |
title | A union of incoherent spaces model for classification |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T19%3A07%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20union%20of%20incoherent%20spaces%20model%20for%20classification&rft.btitle=2010%20IEEE%20International%20Conference%20on%20Acoustics,%20Speech%20and%20Signal%20Processing&rft.au=Schnass,%20K&rft.date=2010-01-01&rft.spage=5490&rft.epage=5493&rft.pages=5490-5493&rft.issn=1520-6149&rft.eissn=2379-190X&rft.isbn=9781424442959&rft.isbn_list=1424442958&rft_id=info:doi/10.1109/ICASSP.2010.5495208&rft_dat=%3Chal_6IE%3Eoai_HAL_inria_00568895v1%3C/hal_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424442966&rft.eisbn_list=1424442966&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5495208&rfr_iscdi=true |