A union of incoherent spaces model for classification

We present a new and computationally efficient scheme for classifying signals into a fixed number of known classes. We model classes as subspaces in which the corresponding data is well represented by a dictionary of features. In order to ensure low misclassification, the subspaces should be incoher...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Schnass, K, Vandergheynst, P
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5493
container_issue
container_start_page 5490
container_title
container_volume
creator Schnass, K
Vandergheynst, P
description We present a new and computationally efficient scheme for classifying signals into a fixed number of known classes. We model classes as subspaces in which the corresponding data is well represented by a dictionary of features. In order to ensure low misclassification, the subspaces should be incoherent so that features of a given class cannot represent efficiently signals from another. We propose a simple iterative strategy to learn dictionaries which are are the same time good for approximating within a class and also discriminant. Preliminary tests on a standard face images database show competitive results.
doi_str_mv 10.1109/ICASSP.2010.5495208
format Conference Proceeding
fullrecord <record><control><sourceid>hal_6IE</sourceid><recordid>TN_cdi_ieee_primary_5495208</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5495208</ieee_id><sourcerecordid>oai_HAL_inria_00568895v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-h256t-636cf544c39dd98a7a62b8583cac3cca6105f57e89435e5e3e96e4ca136575e43</originalsourceid><addsrcrecordid>eNpVkEtLA0EQhMcXGGN-QS5zl43z6tnpYwi-IKAQBW9LO-klI5vdsBMF_70LCYKngqqvmqaEmGo101rh7dNivlq9zIwaDHAIRoUTMcEyaGeccwa9PxUjY0ssNKr3s38Z4LkY6aFTeO3wUlzl_KmUCqULIwFz-dWmrpVdLVMbuw333O5l3lHkLLfdmhtZd72MDeWc6hRpP9DX4qKmJvPkqGPxdn_3ungsls8Pw6_LYmPA7wtvfazBuWhxvcZAJXnzESDYSNHGSF4rqKHkgM4CA1tGzy6Sth5KYGfH4uZwd0NNtevTlvqfqqNUPc6XVWr7RJVS4ENA-NYDPT3QiZn_8ONe9hfVhVku</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A union of incoherent spaces model for classification</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Schnass, K ; Vandergheynst, P</creator><creatorcontrib>Schnass, K ; Vandergheynst, P</creatorcontrib><description>We present a new and computationally efficient scheme for classifying signals into a fixed number of known classes. We model classes as subspaces in which the corresponding data is well represented by a dictionary of features. In order to ensure low misclassification, the subspaces should be incoherent so that features of a given class cannot represent efficiently signals from another. We propose a simple iterative strategy to learn dictionaries which are are the same time good for approximating within a class and also discriminant. Preliminary tests on a standard face images database show competitive results.</description><identifier>ISSN: 1520-6149</identifier><identifier>ISBN: 9781424442959</identifier><identifier>ISBN: 1424442958</identifier><identifier>EISSN: 2379-190X</identifier><identifier>EISBN: 9781424442966</identifier><identifier>EISBN: 1424442966</identifier><identifier>DOI: 10.1109/ICASSP.2010.5495208</identifier><language>eng</language><publisher>IEEE</publisher><subject>alternate projections ; classification ; Dictionaries ; dictionary learning ; feature selection ; Grassmannian manifolds ; Image databases ; Laboratories ; Signal processing ; Space technology ; subspace learning ; Testing ; Training data</subject><ispartof>2010 IEEE International Conference on Acoustics, Speech and Signal Processing, 2010, p.5490-5493</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5495208$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,885,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5495208$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://inria.hal.science/inria-00568895$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Schnass, K</creatorcontrib><creatorcontrib>Vandergheynst, P</creatorcontrib><title>A union of incoherent spaces model for classification</title><title>2010 IEEE International Conference on Acoustics, Speech and Signal Processing</title><addtitle>ICASSP</addtitle><description>We present a new and computationally efficient scheme for classifying signals into a fixed number of known classes. We model classes as subspaces in which the corresponding data is well represented by a dictionary of features. In order to ensure low misclassification, the subspaces should be incoherent so that features of a given class cannot represent efficiently signals from another. We propose a simple iterative strategy to learn dictionaries which are are the same time good for approximating within a class and also discriminant. Preliminary tests on a standard face images database show competitive results.</description><subject>alternate projections</subject><subject>classification</subject><subject>Dictionaries</subject><subject>dictionary learning</subject><subject>feature selection</subject><subject>Grassmannian manifolds</subject><subject>Image databases</subject><subject>Laboratories</subject><subject>Signal processing</subject><subject>Space technology</subject><subject>subspace learning</subject><subject>Testing</subject><subject>Training data</subject><issn>1520-6149</issn><issn>2379-190X</issn><isbn>9781424442959</isbn><isbn>1424442958</isbn><isbn>9781424442966</isbn><isbn>1424442966</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVkEtLA0EQhMcXGGN-QS5zl43z6tnpYwi-IKAQBW9LO-klI5vdsBMF_70LCYKngqqvmqaEmGo101rh7dNivlq9zIwaDHAIRoUTMcEyaGeccwa9PxUjY0ssNKr3s38Z4LkY6aFTeO3wUlzl_KmUCqULIwFz-dWmrpVdLVMbuw333O5l3lHkLLfdmhtZd72MDeWc6hRpP9DX4qKmJvPkqGPxdn_3ungsls8Pw6_LYmPA7wtvfazBuWhxvcZAJXnzESDYSNHGSF4rqKHkgM4CA1tGzy6Sth5KYGfH4uZwd0NNtevTlvqfqqNUPc6XVWr7RJVS4ENA-NYDPT3QiZn_8ONe9hfVhVku</recordid><startdate>20100101</startdate><enddate>20100101</enddate><creator>Schnass, K</creator><creator>Vandergheynst, P</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope><scope>1XC</scope></search><sort><creationdate>20100101</creationdate><title>A union of incoherent spaces model for classification</title><author>Schnass, K ; Vandergheynst, P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-h256t-636cf544c39dd98a7a62b8583cac3cca6105f57e89435e5e3e96e4ca136575e43</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>alternate projections</topic><topic>classification</topic><topic>Dictionaries</topic><topic>dictionary learning</topic><topic>feature selection</topic><topic>Grassmannian manifolds</topic><topic>Image databases</topic><topic>Laboratories</topic><topic>Signal processing</topic><topic>Space technology</topic><topic>subspace learning</topic><topic>Testing</topic><topic>Training data</topic><toplevel>online_resources</toplevel><creatorcontrib>Schnass, K</creatorcontrib><creatorcontrib>Vandergheynst, P</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection><collection>Hyper Article en Ligne (HAL)</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Schnass, K</au><au>Vandergheynst, P</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A union of incoherent spaces model for classification</atitle><btitle>2010 IEEE International Conference on Acoustics, Speech and Signal Processing</btitle><stitle>ICASSP</stitle><date>2010-01-01</date><risdate>2010</risdate><spage>5490</spage><epage>5493</epage><pages>5490-5493</pages><issn>1520-6149</issn><eissn>2379-190X</eissn><isbn>9781424442959</isbn><isbn>1424442958</isbn><eisbn>9781424442966</eisbn><eisbn>1424442966</eisbn><abstract>We present a new and computationally efficient scheme for classifying signals into a fixed number of known classes. We model classes as subspaces in which the corresponding data is well represented by a dictionary of features. In order to ensure low misclassification, the subspaces should be incoherent so that features of a given class cannot represent efficiently signals from another. We propose a simple iterative strategy to learn dictionaries which are are the same time good for approximating within a class and also discriminant. Preliminary tests on a standard face images database show competitive results.</abstract><pub>IEEE</pub><doi>10.1109/ICASSP.2010.5495208</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1520-6149
ispartof 2010 IEEE International Conference on Acoustics, Speech and Signal Processing, 2010, p.5490-5493
issn 1520-6149
2379-190X
language eng
recordid cdi_ieee_primary_5495208
source IEEE Electronic Library (IEL) Conference Proceedings
subjects alternate projections
classification
Dictionaries
dictionary learning
feature selection
Grassmannian manifolds
Image databases
Laboratories
Signal processing
Space technology
subspace learning
Testing
Training data
title A union of incoherent spaces model for classification
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T19%3A07%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20union%20of%20incoherent%20spaces%20model%20for%20classification&rft.btitle=2010%20IEEE%20International%20Conference%20on%20Acoustics,%20Speech%20and%20Signal%20Processing&rft.au=Schnass,%20K&rft.date=2010-01-01&rft.spage=5490&rft.epage=5493&rft.pages=5490-5493&rft.issn=1520-6149&rft.eissn=2379-190X&rft.isbn=9781424442959&rft.isbn_list=1424442958&rft_id=info:doi/10.1109/ICASSP.2010.5495208&rft_dat=%3Chal_6IE%3Eoai_HAL_inria_00568895v1%3C/hal_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424442966&rft.eisbn_list=1424442966&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5495208&rfr_iscdi=true