Using context dependent distributions for coding prediction residuals of companded audio signals

We propose a context conditioning scheme for encoding the prediction residuals when compressing files containing companded signals. Our scheme encompasses decompanding of the signals, performing linear prediction in the decompanded domain, and then companding back the predicted value into a compande...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Tabus, Ioan, Ghido, Florin, Vasilache, Adriana
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4697
container_issue
container_start_page 4694
container_title
container_volume
creator Tabus, Ioan
Ghido, Florin
Vasilache, Adriana
description We propose a context conditioning scheme for encoding the prediction residuals when compressing files containing companded signals. Our scheme encompasses decompanding of the signals, performing linear prediction in the decompanded domain, and then companding back the predicted value into a companded prediction (CP) value, which will differ from the true companded value by an amount called companded prediction residual (CPR). The proposed context conditioning scheme for encoding the CPR, uses a probability distribution conditional on a context made up of two quantities: (1) the predicted value and (2) a scale parameter of the background probability distribution function assumed for the decompanded domain residuals. Various context building schemes and various storing strategies can be used to obtain the necessary conditional coding distribution of the CPR, to be used with an arithmetic coder or range coder. The implementation in fixed point precision can be done very efficiently and with very low memory requirements.
doi_str_mv 10.1109/ICASSP.2010.5495192
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5495192</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5495192</ieee_id><sourcerecordid>5495192</sourcerecordid><originalsourceid>FETCH-LOGICAL-i105t-d288f1058f8101547bf886aaa8bf6a2240d49194d111f6ec7c53217424eced373</originalsourceid><addsrcrecordid>eNpVUE1LAzEUjF9grf0FveQPbM3LJpvkKEWrUFCoBW81u3kpEbu7JLug_94Ue_E0w8y8BzOEzIEtAJi5e17ebzavC86yIIWRYPgZmRmlQXAhBDdVdU4mvFSmAMPeL_550lySCUjOigqEuSY3KX0yxrQSekI-tim0e9p07YDfA3XYY-uwzSykIYZ6HELXJuq7mDPuGO0jutAcZRoxBTfar0Q7n-1Db_Oto3Z0oaMp7Nts3ZIrnwFnJ5yS7ePD2_KpWL-scq11EYDJoXBca5-Z9hoYSKFqr3VlrdW1ryzngjlhwAgHAL7CRjWy5KByRWzQlaqckvnf34CIuz6Gg40_u9NY5S_n21tW</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Using context dependent distributions for coding prediction residuals of companded audio signals</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Tabus, Ioan ; Ghido, Florin ; Vasilache, Adriana</creator><creatorcontrib>Tabus, Ioan ; Ghido, Florin ; Vasilache, Adriana</creatorcontrib><description>We propose a context conditioning scheme for encoding the prediction residuals when compressing files containing companded signals. Our scheme encompasses decompanding of the signals, performing linear prediction in the decompanded domain, and then companding back the predicted value into a companded prediction (CP) value, which will differ from the true companded value by an amount called companded prediction residual (CPR). The proposed context conditioning scheme for encoding the CPR, uses a probability distribution conditional on a context made up of two quantities: (1) the predicted value and (2) a scale parameter of the background probability distribution function assumed for the decompanded domain residuals. Various context building schemes and various storing strategies can be used to obtain the necessary conditional coding distribution of the CPR, to be used with an arithmetic coder or range coder. The implementation in fixed point precision can be done very efficiently and with very low memory requirements.</description><identifier>ISSN: 1520-6149</identifier><identifier>ISBN: 9781424442959</identifier><identifier>ISBN: 1424442958</identifier><identifier>EISSN: 2379-190X</identifier><identifier>EISBN: 9781424442966</identifier><identifier>EISBN: 1424442966</identifier><identifier>DOI: 10.1109/ICASSP.2010.5495192</identifier><language>eng</language><publisher>IEEE</publisher><subject>Arithmetic ; Audio compression ; companding transforms ; Context modeling ; context modelling ; Distributed computing ; Encoding ; G.711 ; Laplace equations ; lossless audio compression ; Probability distribution ; Signal processing ; Speech ; Telephony</subject><ispartof>2010 IEEE International Conference on Acoustics, Speech and Signal Processing, 2010, p.4694-4697</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5495192$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5495192$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Tabus, Ioan</creatorcontrib><creatorcontrib>Ghido, Florin</creatorcontrib><creatorcontrib>Vasilache, Adriana</creatorcontrib><title>Using context dependent distributions for coding prediction residuals of companded audio signals</title><title>2010 IEEE International Conference on Acoustics, Speech and Signal Processing</title><addtitle>ICASSP</addtitle><description>We propose a context conditioning scheme for encoding the prediction residuals when compressing files containing companded signals. Our scheme encompasses decompanding of the signals, performing linear prediction in the decompanded domain, and then companding back the predicted value into a companded prediction (CP) value, which will differ from the true companded value by an amount called companded prediction residual (CPR). The proposed context conditioning scheme for encoding the CPR, uses a probability distribution conditional on a context made up of two quantities: (1) the predicted value and (2) a scale parameter of the background probability distribution function assumed for the decompanded domain residuals. Various context building schemes and various storing strategies can be used to obtain the necessary conditional coding distribution of the CPR, to be used with an arithmetic coder or range coder. The implementation in fixed point precision can be done very efficiently and with very low memory requirements.</description><subject>Arithmetic</subject><subject>Audio compression</subject><subject>companding transforms</subject><subject>Context modeling</subject><subject>context modelling</subject><subject>Distributed computing</subject><subject>Encoding</subject><subject>G.711</subject><subject>Laplace equations</subject><subject>lossless audio compression</subject><subject>Probability distribution</subject><subject>Signal processing</subject><subject>Speech</subject><subject>Telephony</subject><issn>1520-6149</issn><issn>2379-190X</issn><isbn>9781424442959</isbn><isbn>1424442958</isbn><isbn>9781424442966</isbn><isbn>1424442966</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVUE1LAzEUjF9grf0FveQPbM3LJpvkKEWrUFCoBW81u3kpEbu7JLug_94Ue_E0w8y8BzOEzIEtAJi5e17ebzavC86yIIWRYPgZmRmlQXAhBDdVdU4mvFSmAMPeL_550lySCUjOigqEuSY3KX0yxrQSekI-tim0e9p07YDfA3XYY-uwzSykIYZ6HELXJuq7mDPuGO0jutAcZRoxBTfar0Q7n-1Db_Oto3Z0oaMp7Nts3ZIrnwFnJ5yS7ePD2_KpWL-scq11EYDJoXBca5-Z9hoYSKFqr3VlrdW1ryzngjlhwAgHAL7CRjWy5KByRWzQlaqckvnf34CIuz6Gg40_u9NY5S_n21tW</recordid><startdate>201003</startdate><enddate>201003</enddate><creator>Tabus, Ioan</creator><creator>Ghido, Florin</creator><creator>Vasilache, Adriana</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201003</creationdate><title>Using context dependent distributions for coding prediction residuals of companded audio signals</title><author>Tabus, Ioan ; Ghido, Florin ; Vasilache, Adriana</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i105t-d288f1058f8101547bf886aaa8bf6a2240d49194d111f6ec7c53217424eced373</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Arithmetic</topic><topic>Audio compression</topic><topic>companding transforms</topic><topic>Context modeling</topic><topic>context modelling</topic><topic>Distributed computing</topic><topic>Encoding</topic><topic>G.711</topic><topic>Laplace equations</topic><topic>lossless audio compression</topic><topic>Probability distribution</topic><topic>Signal processing</topic><topic>Speech</topic><topic>Telephony</topic><toplevel>online_resources</toplevel><creatorcontrib>Tabus, Ioan</creatorcontrib><creatorcontrib>Ghido, Florin</creatorcontrib><creatorcontrib>Vasilache, Adriana</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tabus, Ioan</au><au>Ghido, Florin</au><au>Vasilache, Adriana</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Using context dependent distributions for coding prediction residuals of companded audio signals</atitle><btitle>2010 IEEE International Conference on Acoustics, Speech and Signal Processing</btitle><stitle>ICASSP</stitle><date>2010-03</date><risdate>2010</risdate><spage>4694</spage><epage>4697</epage><pages>4694-4697</pages><issn>1520-6149</issn><eissn>2379-190X</eissn><isbn>9781424442959</isbn><isbn>1424442958</isbn><eisbn>9781424442966</eisbn><eisbn>1424442966</eisbn><abstract>We propose a context conditioning scheme for encoding the prediction residuals when compressing files containing companded signals. Our scheme encompasses decompanding of the signals, performing linear prediction in the decompanded domain, and then companding back the predicted value into a companded prediction (CP) value, which will differ from the true companded value by an amount called companded prediction residual (CPR). The proposed context conditioning scheme for encoding the CPR, uses a probability distribution conditional on a context made up of two quantities: (1) the predicted value and (2) a scale parameter of the background probability distribution function assumed for the decompanded domain residuals. Various context building schemes and various storing strategies can be used to obtain the necessary conditional coding distribution of the CPR, to be used with an arithmetic coder or range coder. The implementation in fixed point precision can be done very efficiently and with very low memory requirements.</abstract><pub>IEEE</pub><doi>10.1109/ICASSP.2010.5495192</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1520-6149
ispartof 2010 IEEE International Conference on Acoustics, Speech and Signal Processing, 2010, p.4694-4697
issn 1520-6149
2379-190X
language eng
recordid cdi_ieee_primary_5495192
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Arithmetic
Audio compression
companding transforms
Context modeling
context modelling
Distributed computing
Encoding
G.711
Laplace equations
lossless audio compression
Probability distribution
Signal processing
Speech
Telephony
title Using context dependent distributions for coding prediction residuals of companded audio signals
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T14%3A24%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Using%20context%20dependent%20distributions%20for%20coding%20prediction%20residuals%20of%20companded%20audio%20signals&rft.btitle=2010%20IEEE%20International%20Conference%20on%20Acoustics,%20Speech%20and%20Signal%20Processing&rft.au=Tabus,%20Ioan&rft.date=2010-03&rft.spage=4694&rft.epage=4697&rft.pages=4694-4697&rft.issn=1520-6149&rft.eissn=2379-190X&rft.isbn=9781424442959&rft.isbn_list=1424442958&rft_id=info:doi/10.1109/ICASSP.2010.5495192&rft_dat=%3Cieee_6IE%3E5495192%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424442966&rft.eisbn_list=1424442966&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5495192&rfr_iscdi=true