Automated localization of macula-fovea area on retina images using blood vessel network topology

In this paper, we propose a simple yet robust unsupervised algorithm for automated localization of macula-fovea area on retina images. The small sizes and weak contrast of the macula-fovea area on retina images make it unreliable to detect it directly. As such, we extract the retina blood vessel net...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Ying, Huajun, Liu, Jyh-Charn
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 653
container_issue
container_start_page 650
container_title
container_volume
creator Ying, Huajun
Liu, Jyh-Charn
description In this paper, we propose a simple yet robust unsupervised algorithm for automated localization of macula-fovea area on retina images. The small sizes and weak contrast of the macula-fovea area on retina images make it unreliable to detect it directly. As such, we extract the retina blood vessel network topology based on local energy function of blood vessel widths and densities and use it as the main image cue to position the macula-fovea area. Regardless of the severity of most retinal diseases as well as variations in field clarity, the high level topology of the retinal blood vessel flows remains fairly predictable. Compared with conventional algorithms, our method can effectively localize the macula-fovea area on retina images with inadequate field clarity and diseased conditions. The algorithm is tested on both STARE and DRIVE retina image databases and gained satisfactory detection results.
doi_str_mv 10.1109/ICASSP.2010.5495144
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5495144</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5495144</ieee_id><sourcerecordid>5495144</sourcerecordid><originalsourceid>FETCH-ieee_primary_54951443</originalsourceid><addsrcrecordid>eNp9j71OwzAUhc2fRIA-QZf7Aim26_x4rCoQbEhl6NZe2pvI4ORWtlNUnp4MXVhYzpG-TzrSEWKq5EwpaR9fl4vV6m2m5QgKYwtlzIWY2KpWRhtjtC3LS5HpeWVzZeX66o8r7LXIVKFlXipjb8VdjJ9SyroydSa2iyFxh4n24HmH3v1gctwDN9DhbvCYN3wkBAxjjDxQcj2C67ClCEN0fQsfnnkPR4qRPPSUvjl8QeIDe25PD-KmQR9pcu57MX1-el--5I6INocwLoXT5nxq_r_9BftCTKQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Automated localization of macula-fovea area on retina images using blood vessel network topology</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Ying, Huajun ; Liu, Jyh-Charn</creator><creatorcontrib>Ying, Huajun ; Liu, Jyh-Charn</creatorcontrib><description>In this paper, we propose a simple yet robust unsupervised algorithm for automated localization of macula-fovea area on retina images. The small sizes and weak contrast of the macula-fovea area on retina images make it unreliable to detect it directly. As such, we extract the retina blood vessel network topology based on local energy function of blood vessel widths and densities and use it as the main image cue to position the macula-fovea area. Regardless of the severity of most retinal diseases as well as variations in field clarity, the high level topology of the retinal blood vessel flows remains fairly predictable. Compared with conventional algorithms, our method can effectively localize the macula-fovea area on retina images with inadequate field clarity and diseased conditions. The algorithm is tested on both STARE and DRIVE retina image databases and gained satisfactory detection results.</description><identifier>ISSN: 1520-6149</identifier><identifier>ISBN: 9781424442959</identifier><identifier>ISBN: 1424442958</identifier><identifier>EISSN: 2379-190X</identifier><identifier>EISBN: 9781424442966</identifier><identifier>EISBN: 1424442966</identifier><identifier>DOI: 10.1109/ICASSP.2010.5495144</identifier><language>eng</language><publisher>IEEE</publisher><subject>Biomedical imaging ; Blood vessels ; field clarity ; Fitting ; macula-fovea area ; Network topology ; Optical imaging ; Pixel ; Retina ; retina blood vessel ; retina image</subject><ispartof>2010 IEEE International Conference on Acoustics, Speech and Signal Processing, 2010, p.650-653</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5495144$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,777,781,786,787,2052,27906,54901</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5495144$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ying, Huajun</creatorcontrib><creatorcontrib>Liu, Jyh-Charn</creatorcontrib><title>Automated localization of macula-fovea area on retina images using blood vessel network topology</title><title>2010 IEEE International Conference on Acoustics, Speech and Signal Processing</title><addtitle>ICASSP</addtitle><description>In this paper, we propose a simple yet robust unsupervised algorithm for automated localization of macula-fovea area on retina images. The small sizes and weak contrast of the macula-fovea area on retina images make it unreliable to detect it directly. As such, we extract the retina blood vessel network topology based on local energy function of blood vessel widths and densities and use it as the main image cue to position the macula-fovea area. Regardless of the severity of most retinal diseases as well as variations in field clarity, the high level topology of the retinal blood vessel flows remains fairly predictable. Compared with conventional algorithms, our method can effectively localize the macula-fovea area on retina images with inadequate field clarity and diseased conditions. The algorithm is tested on both STARE and DRIVE retina image databases and gained satisfactory detection results.</description><subject>Biomedical imaging</subject><subject>Blood vessels</subject><subject>field clarity</subject><subject>Fitting</subject><subject>macula-fovea area</subject><subject>Network topology</subject><subject>Optical imaging</subject><subject>Pixel</subject><subject>Retina</subject><subject>retina blood vessel</subject><subject>retina image</subject><issn>1520-6149</issn><issn>2379-190X</issn><isbn>9781424442959</isbn><isbn>1424442958</isbn><isbn>9781424442966</isbn><isbn>1424442966</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNp9j71OwzAUhc2fRIA-QZf7Aim26_x4rCoQbEhl6NZe2pvI4ORWtlNUnp4MXVhYzpG-TzrSEWKq5EwpaR9fl4vV6m2m5QgKYwtlzIWY2KpWRhtjtC3LS5HpeWVzZeX66o8r7LXIVKFlXipjb8VdjJ9SyroydSa2iyFxh4n24HmH3v1gctwDN9DhbvCYN3wkBAxjjDxQcj2C67ClCEN0fQsfnnkPR4qRPPSUvjl8QeIDe25PD-KmQR9pcu57MX1-el--5I6INocwLoXT5nxq_r_9BftCTKQ</recordid><startdate>201003</startdate><enddate>201003</enddate><creator>Ying, Huajun</creator><creator>Liu, Jyh-Charn</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201003</creationdate><title>Automated localization of macula-fovea area on retina images using blood vessel network topology</title><author>Ying, Huajun ; Liu, Jyh-Charn</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ieee_primary_54951443</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Biomedical imaging</topic><topic>Blood vessels</topic><topic>field clarity</topic><topic>Fitting</topic><topic>macula-fovea area</topic><topic>Network topology</topic><topic>Optical imaging</topic><topic>Pixel</topic><topic>Retina</topic><topic>retina blood vessel</topic><topic>retina image</topic><toplevel>online_resources</toplevel><creatorcontrib>Ying, Huajun</creatorcontrib><creatorcontrib>Liu, Jyh-Charn</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ying, Huajun</au><au>Liu, Jyh-Charn</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Automated localization of macula-fovea area on retina images using blood vessel network topology</atitle><btitle>2010 IEEE International Conference on Acoustics, Speech and Signal Processing</btitle><stitle>ICASSP</stitle><date>2010-03</date><risdate>2010</risdate><spage>650</spage><epage>653</epage><pages>650-653</pages><issn>1520-6149</issn><eissn>2379-190X</eissn><isbn>9781424442959</isbn><isbn>1424442958</isbn><eisbn>9781424442966</eisbn><eisbn>1424442966</eisbn><abstract>In this paper, we propose a simple yet robust unsupervised algorithm for automated localization of macula-fovea area on retina images. The small sizes and weak contrast of the macula-fovea area on retina images make it unreliable to detect it directly. As such, we extract the retina blood vessel network topology based on local energy function of blood vessel widths and densities and use it as the main image cue to position the macula-fovea area. Regardless of the severity of most retinal diseases as well as variations in field clarity, the high level topology of the retinal blood vessel flows remains fairly predictable. Compared with conventional algorithms, our method can effectively localize the macula-fovea area on retina images with inadequate field clarity and diseased conditions. The algorithm is tested on both STARE and DRIVE retina image databases and gained satisfactory detection results.</abstract><pub>IEEE</pub><doi>10.1109/ICASSP.2010.5495144</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1520-6149
ispartof 2010 IEEE International Conference on Acoustics, Speech and Signal Processing, 2010, p.650-653
issn 1520-6149
2379-190X
language eng
recordid cdi_ieee_primary_5495144
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Biomedical imaging
Blood vessels
field clarity
Fitting
macula-fovea area
Network topology
Optical imaging
Pixel
Retina
retina blood vessel
retina image
title Automated localization of macula-fovea area on retina images using blood vessel network topology
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T00%3A59%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Automated%20localization%20of%20macula-fovea%20area%20on%20retina%20images%20using%20blood%20vessel%20network%20topology&rft.btitle=2010%20IEEE%20International%20Conference%20on%20Acoustics,%20Speech%20and%20Signal%20Processing&rft.au=Ying,%20Huajun&rft.date=2010-03&rft.spage=650&rft.epage=653&rft.pages=650-653&rft.issn=1520-6149&rft.eissn=2379-190X&rft.isbn=9781424442959&rft.isbn_list=1424442958&rft_id=info:doi/10.1109/ICASSP.2010.5495144&rft_dat=%3Cieee_6IE%3E5495144%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424442966&rft.eisbn_list=1424442966&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5495144&rfr_iscdi=true