Engine Condition Monitoring Based on Grey AR Combination Model

Aiming at the problems of the wear condition monitoring, grey theory and auto-regressive combination forecasting model was put forward, and the combination model was build. The rough trend of the wear particle content change can be reflected through grey theory, and the detail of the change can be r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Wang, Qiang, Dai, Sheng Hui
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 218
container_issue
container_start_page 215
container_title
container_volume 1
creator Wang, Qiang
Dai, Sheng Hui
description Aiming at the problems of the wear condition monitoring, grey theory and auto-regressive combination forecasting model was put forward, and the combination model was build. The rough trend of the wear particle content change can be reflected through grey theory, and the detail of the change can be reflected through auto-regressive model. By testing and comparing a set of Ferro graphic data, the result shows that the combination model has a better forecasting result.
doi_str_mv 10.1109/CESCE.2010.19
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5493095</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5493095</ieee_id><sourcerecordid>5493095</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-eb9362921eba659aef2d0f8a0e4de53b12a0409e9a1c10e48901df4a517564ef3</originalsourceid><addsrcrecordid>eNpFjE1Lw0AURUekoK1dunIzfyD1vfkybyPUEKtQEbT7MnHelJF2Ikk2_femWPBuLvdwuELcIiwQge6r-rOqFwpOmy7EFI0yxpIydPk_NEzE9OQQgFPmSsz7_hvGOFeWDq_FY513KbOs2hzSkNos39qchrZLeSeffM9BjmzV8VEuP0br0KTsz17g_Y2YRL_veX7umdg815vqpVi_r16r5bpIBEPBDWmnSCE33lnyHFWAWHpgE9jqBpUHA8Tk8QtHWBJgiMZbfLDOcNQzcfd3m5h5-9Olg--OW2tIA1n9C_zaSTQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Engine Condition Monitoring Based on Grey AR Combination Model</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Wang, Qiang ; Dai, Sheng Hui</creator><creatorcontrib>Wang, Qiang ; Dai, Sheng Hui</creatorcontrib><description>Aiming at the problems of the wear condition monitoring, grey theory and auto-regressive combination forecasting model was put forward, and the combination model was build. The rough trend of the wear particle content change can be reflected through grey theory, and the detail of the change can be reflected through auto-regressive model. By testing and comparing a set of Ferro graphic data, the result shows that the combination model has a better forecasting result.</description><identifier>ISBN: 1424459230</identifier><identifier>ISBN: 9780769539720</identifier><identifier>ISBN: 9781424459230</identifier><identifier>ISBN: 0769539726</identifier><identifier>EISBN: 1424459249</identifier><identifier>EISBN: 9781424459247</identifier><identifier>DOI: 10.1109/CESCE.2010.19</identifier><identifier>LCCN: 2010900624</identifier><language>eng</language><publisher>IEEE</publisher><subject>Abrasives ; auto-regressive ; Condition monitoring ; Engines ; Graphics ; grey theory ; Least squares approximation ; Linear regression ; Predictive models ; Technology forecasting ; Testing ; Time series analysis</subject><ispartof>2010 International Conference on Challenges in Environmental Science and Computer Engineering, 2010, Vol.1, p.215-218</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5493095$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,777,781,786,787,2052,27906,54901</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5493095$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wang, Qiang</creatorcontrib><creatorcontrib>Dai, Sheng Hui</creatorcontrib><title>Engine Condition Monitoring Based on Grey AR Combination Model</title><title>2010 International Conference on Challenges in Environmental Science and Computer Engineering</title><addtitle>CESCE</addtitle><description>Aiming at the problems of the wear condition monitoring, grey theory and auto-regressive combination forecasting model was put forward, and the combination model was build. The rough trend of the wear particle content change can be reflected through grey theory, and the detail of the change can be reflected through auto-regressive model. By testing and comparing a set of Ferro graphic data, the result shows that the combination model has a better forecasting result.</description><subject>Abrasives</subject><subject>auto-regressive</subject><subject>Condition monitoring</subject><subject>Engines</subject><subject>Graphics</subject><subject>grey theory</subject><subject>Least squares approximation</subject><subject>Linear regression</subject><subject>Predictive models</subject><subject>Technology forecasting</subject><subject>Testing</subject><subject>Time series analysis</subject><isbn>1424459230</isbn><isbn>9780769539720</isbn><isbn>9781424459230</isbn><isbn>0769539726</isbn><isbn>1424459249</isbn><isbn>9781424459247</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFjE1Lw0AURUekoK1dunIzfyD1vfkybyPUEKtQEbT7MnHelJF2Ikk2_femWPBuLvdwuELcIiwQge6r-rOqFwpOmy7EFI0yxpIydPk_NEzE9OQQgFPmSsz7_hvGOFeWDq_FY513KbOs2hzSkNos39qchrZLeSeffM9BjmzV8VEuP0br0KTsz17g_Y2YRL_veX7umdg815vqpVi_r16r5bpIBEPBDWmnSCE33lnyHFWAWHpgE9jqBpUHA8Tk8QtHWBJgiMZbfLDOcNQzcfd3m5h5-9Olg--OW2tIA1n9C_zaSTQ</recordid><startdate>201003</startdate><enddate>201003</enddate><creator>Wang, Qiang</creator><creator>Dai, Sheng Hui</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201003</creationdate><title>Engine Condition Monitoring Based on Grey AR Combination Model</title><author>Wang, Qiang ; Dai, Sheng Hui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-eb9362921eba659aef2d0f8a0e4de53b12a0409e9a1c10e48901df4a517564ef3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Abrasives</topic><topic>auto-regressive</topic><topic>Condition monitoring</topic><topic>Engines</topic><topic>Graphics</topic><topic>grey theory</topic><topic>Least squares approximation</topic><topic>Linear regression</topic><topic>Predictive models</topic><topic>Technology forecasting</topic><topic>Testing</topic><topic>Time series analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Wang, Qiang</creatorcontrib><creatorcontrib>Dai, Sheng Hui</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wang, Qiang</au><au>Dai, Sheng Hui</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Engine Condition Monitoring Based on Grey AR Combination Model</atitle><btitle>2010 International Conference on Challenges in Environmental Science and Computer Engineering</btitle><stitle>CESCE</stitle><date>2010-03</date><risdate>2010</risdate><volume>1</volume><spage>215</spage><epage>218</epage><pages>215-218</pages><isbn>1424459230</isbn><isbn>9780769539720</isbn><isbn>9781424459230</isbn><isbn>0769539726</isbn><eisbn>1424459249</eisbn><eisbn>9781424459247</eisbn><abstract>Aiming at the problems of the wear condition monitoring, grey theory and auto-regressive combination forecasting model was put forward, and the combination model was build. The rough trend of the wear particle content change can be reflected through grey theory, and the detail of the change can be reflected through auto-regressive model. By testing and comparing a set of Ferro graphic data, the result shows that the combination model has a better forecasting result.</abstract><pub>IEEE</pub><doi>10.1109/CESCE.2010.19</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 1424459230
ispartof 2010 International Conference on Challenges in Environmental Science and Computer Engineering, 2010, Vol.1, p.215-218
issn
language eng
recordid cdi_ieee_primary_5493095
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Abrasives
auto-regressive
Condition monitoring
Engines
Graphics
grey theory
Least squares approximation
Linear regression
Predictive models
Technology forecasting
Testing
Time series analysis
title Engine Condition Monitoring Based on Grey AR Combination Model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T23%3A16%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Engine%20Condition%20Monitoring%20Based%20on%20Grey%20AR%20Combination%20Model&rft.btitle=2010%20International%20Conference%20on%20Challenges%20in%20Environmental%20Science%20and%20Computer%20Engineering&rft.au=Wang,%20Qiang&rft.date=2010-03&rft.volume=1&rft.spage=215&rft.epage=218&rft.pages=215-218&rft.isbn=1424459230&rft.isbn_list=9780769539720&rft.isbn_list=9781424459230&rft.isbn_list=0769539726&rft_id=info:doi/10.1109/CESCE.2010.19&rft_dat=%3Cieee_6IE%3E5493095%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424459249&rft.eisbn_list=9781424459247&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5493095&rfr_iscdi=true