A new neural network based sequence estimator in non-Gaussian noise environment

The application of neural network for sequence estimation in the presence of both impulsive noise and intersymbol interference is presented. In this estimator, a nonlinearity is embedded in the conventional steepest descent method for suppressing the impulse noise during the iteration and thus a dua...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Weng, J.F., Leung, S.H., Bi, G.G.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1587 vol.3
container_issue
container_start_page 1582
container_title
container_volume 3
creator Weng, J.F.
Leung, S.H.
Bi, G.G.
description The application of neural network for sequence estimation in the presence of both impulsive noise and intersymbol interference is presented. In this estimator, a nonlinearity is embedded in the conventional steepest descent method for suppressing the impulse noise during the iteration and thus a dual nonlinear steepest descent algorithm is developed for estimating the symbol sequence. This algorithm can be implemented by a recurrent correlation neural network with highly parallel processing. To further improve the performance, a decision feedback technique is developed. It is shown in computer simulations that the new estimator outperforms the linear Viterbi algorithm particularly when there is impulse noise.
doi_str_mv 10.1109/ICNN.1996.549136
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_549136</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>549136</ieee_id><sourcerecordid>549136</sourcerecordid><originalsourceid>FETCH-ieee_primary_5491363</originalsourceid><addsrcrecordid>eNp9jssKwjAURAMi-OpeXOUHWpM-zVKKr03duC9RrxBtE81tLf69EV07MAzDgWEImXIWcM7EfJcXRcCFSIMkFjxKe2TEsgWLopCzZEA8xCtzipMkzLIh2S-phs65tbJy0XTG3uhRIpwpwqMFfQIK2KhaNsZSpak22t_IFlHJT1HouH4qa3QNupmQ_kVWCN4vx2S2Xh3yra8AoLxbt2Nf5fda9Be-AQ4WPiw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A new neural network based sequence estimator in non-Gaussian noise environment</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Weng, J.F. ; Leung, S.H. ; Bi, G.G.</creator><creatorcontrib>Weng, J.F. ; Leung, S.H. ; Bi, G.G.</creatorcontrib><description>The application of neural network for sequence estimation in the presence of both impulsive noise and intersymbol interference is presented. In this estimator, a nonlinearity is embedded in the conventional steepest descent method for suppressing the impulse noise during the iteration and thus a dual nonlinear steepest descent algorithm is developed for estimating the symbol sequence. This algorithm can be implemented by a recurrent correlation neural network with highly parallel processing. To further improve the performance, a decision feedback technique is developed. It is shown in computer simulations that the new estimator outperforms the linear Viterbi algorithm particularly when there is impulse noise.</description><identifier>ISBN: 0780332105</identifier><identifier>ISBN: 9780780332102</identifier><identifier>DOI: 10.1109/ICNN.1996.549136</identifier><language>eng</language><publisher>IEEE</publisher><subject>Additive noise ; Gaussian noise ; Hopfield neural networks ; Intelligent networks ; Interference ; Neural networks ; Noise shaping ; Recurrent neural networks ; Viterbi algorithm ; Working environment noise</subject><ispartof>Proceedings of International Conference on Neural Networks (ICNN'96), 1996, Vol.3, p.1582-1587 vol.3</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/549136$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,777,781,786,787,2052,4036,4037,27906,54901</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/549136$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Weng, J.F.</creatorcontrib><creatorcontrib>Leung, S.H.</creatorcontrib><creatorcontrib>Bi, G.G.</creatorcontrib><title>A new neural network based sequence estimator in non-Gaussian noise environment</title><title>Proceedings of International Conference on Neural Networks (ICNN'96)</title><addtitle>ICNN</addtitle><description>The application of neural network for sequence estimation in the presence of both impulsive noise and intersymbol interference is presented. In this estimator, a nonlinearity is embedded in the conventional steepest descent method for suppressing the impulse noise during the iteration and thus a dual nonlinear steepest descent algorithm is developed for estimating the symbol sequence. This algorithm can be implemented by a recurrent correlation neural network with highly parallel processing. To further improve the performance, a decision feedback technique is developed. It is shown in computer simulations that the new estimator outperforms the linear Viterbi algorithm particularly when there is impulse noise.</description><subject>Additive noise</subject><subject>Gaussian noise</subject><subject>Hopfield neural networks</subject><subject>Intelligent networks</subject><subject>Interference</subject><subject>Neural networks</subject><subject>Noise shaping</subject><subject>Recurrent neural networks</subject><subject>Viterbi algorithm</subject><subject>Working environment noise</subject><isbn>0780332105</isbn><isbn>9780780332102</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>1996</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNp9jssKwjAURAMi-OpeXOUHWpM-zVKKr03duC9RrxBtE81tLf69EV07MAzDgWEImXIWcM7EfJcXRcCFSIMkFjxKe2TEsgWLopCzZEA8xCtzipMkzLIh2S-phs65tbJy0XTG3uhRIpwpwqMFfQIK2KhaNsZSpak22t_IFlHJT1HouH4qa3QNupmQ_kVWCN4vx2S2Xh3yra8AoLxbt2Nf5fda9Be-AQ4WPiw</recordid><startdate>1996</startdate><enddate>1996</enddate><creator>Weng, J.F.</creator><creator>Leung, S.H.</creator><creator>Bi, G.G.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>1996</creationdate><title>A new neural network based sequence estimator in non-Gaussian noise environment</title><author>Weng, J.F. ; Leung, S.H. ; Bi, G.G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ieee_primary_5491363</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>1996</creationdate><topic>Additive noise</topic><topic>Gaussian noise</topic><topic>Hopfield neural networks</topic><topic>Intelligent networks</topic><topic>Interference</topic><topic>Neural networks</topic><topic>Noise shaping</topic><topic>Recurrent neural networks</topic><topic>Viterbi algorithm</topic><topic>Working environment noise</topic><toplevel>online_resources</toplevel><creatorcontrib>Weng, J.F.</creatorcontrib><creatorcontrib>Leung, S.H.</creatorcontrib><creatorcontrib>Bi, G.G.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Weng, J.F.</au><au>Leung, S.H.</au><au>Bi, G.G.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A new neural network based sequence estimator in non-Gaussian noise environment</atitle><btitle>Proceedings of International Conference on Neural Networks (ICNN'96)</btitle><stitle>ICNN</stitle><date>1996</date><risdate>1996</risdate><volume>3</volume><spage>1582</spage><epage>1587 vol.3</epage><pages>1582-1587 vol.3</pages><isbn>0780332105</isbn><isbn>9780780332102</isbn><abstract>The application of neural network for sequence estimation in the presence of both impulsive noise and intersymbol interference is presented. In this estimator, a nonlinearity is embedded in the conventional steepest descent method for suppressing the impulse noise during the iteration and thus a dual nonlinear steepest descent algorithm is developed for estimating the symbol sequence. This algorithm can be implemented by a recurrent correlation neural network with highly parallel processing. To further improve the performance, a decision feedback technique is developed. It is shown in computer simulations that the new estimator outperforms the linear Viterbi algorithm particularly when there is impulse noise.</abstract><pub>IEEE</pub><doi>10.1109/ICNN.1996.549136</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 0780332105
ispartof Proceedings of International Conference on Neural Networks (ICNN'96), 1996, Vol.3, p.1582-1587 vol.3
issn
language eng
recordid cdi_ieee_primary_549136
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Additive noise
Gaussian noise
Hopfield neural networks
Intelligent networks
Interference
Neural networks
Noise shaping
Recurrent neural networks
Viterbi algorithm
Working environment noise
title A new neural network based sequence estimator in non-Gaussian noise environment
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T16%3A23%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20new%20neural%20network%20based%20sequence%20estimator%20in%20non-Gaussian%20noise%20environment&rft.btitle=Proceedings%20of%20International%20Conference%20on%20Neural%20Networks%20(ICNN'96)&rft.au=Weng,%20J.F.&rft.date=1996&rft.volume=3&rft.spage=1582&rft.epage=1587%20vol.3&rft.pages=1582-1587%20vol.3&rft.isbn=0780332105&rft.isbn_list=9780780332102&rft_id=info:doi/10.1109/ICNN.1996.549136&rft_dat=%3Cieee_6IE%3E549136%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=549136&rfr_iscdi=true