A shape classifier based on Hopfield-Amari network

The representation and recognition of a planar shape based on contour information is an important issue in computer vision. We propose a method for extracting the main features of a contour using the curve bend function (CBF), which can be used to characterize the contour completely. A Hopfield-Amar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Fu, A.M.N., Hong Yan
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 593 vol.1
container_issue
container_start_page 588
container_title
container_volume 1
creator Fu, A.M.N.
Hong Yan
description The representation and recognition of a planar shape based on contour information is an important issue in computer vision. We propose a method for extracting the main features of a contour using the curve bend function (CBF), which can be used to characterize the contour completely. A Hopfield-Amari network is built based on the CBF description to perform classification of planar shapes. The experimental results demonstrate that the proposed system is powerful and reliable for solving shape recognition problems.
doi_str_mv 10.1109/ICNN.1996.548961
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_548961</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>548961</ieee_id><sourcerecordid>548961</sourcerecordid><originalsourceid>FETCH-ieee_primary_5489613</originalsourceid><addsrcrecordid>eNpjYJAwNNAzNDSw1Pd09vPTM7S0NNMzNbGwNDNkZuAyMLcwMDY2MjQw5WDgLS7OMgACE1NTI3NzTgYjR4XijMSCVIXknMTi4sy0zNQihaTE4tQUhfw8BY_8AqBAToquY25iUaZCXmpJeX5RNg8Da1piTnEqL5TmZpBycw1x9tDNTE1NjS8oygQqroyH2G6MVxIApJIylA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A shape classifier based on Hopfield-Amari network</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Fu, A.M.N. ; Hong Yan</creator><creatorcontrib>Fu, A.M.N. ; Hong Yan</creatorcontrib><description>The representation and recognition of a planar shape based on contour information is an important issue in computer vision. We propose a method for extracting the main features of a contour using the curve bend function (CBF), which can be used to characterize the contour completely. A Hopfield-Amari network is built based on the CBF description to perform classification of planar shapes. The experimental results demonstrate that the proposed system is powerful and reliable for solving shape recognition problems.</description><identifier>ISBN: 0780332105</identifier><identifier>ISBN: 9780780332102</identifier><identifier>DOI: 10.1109/ICNN.1996.548961</identifier><language>eng</language><publisher>IEEE</publisher><subject>Associative memory ; Computer vision ; Counting circuits ; Data mining ; Feature extraction ; Hopfield neural networks ; Pattern analysis ; Pattern recognition ; Power system reliability ; Shape</subject><ispartof>Proceedings of International Conference on Neural Networks (ICNN'96), 1996, Vol.1, p.588-593 vol.1</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/548961$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,4036,4037,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/548961$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Fu, A.M.N.</creatorcontrib><creatorcontrib>Hong Yan</creatorcontrib><title>A shape classifier based on Hopfield-Amari network</title><title>Proceedings of International Conference on Neural Networks (ICNN'96)</title><addtitle>ICNN</addtitle><description>The representation and recognition of a planar shape based on contour information is an important issue in computer vision. We propose a method for extracting the main features of a contour using the curve bend function (CBF), which can be used to characterize the contour completely. A Hopfield-Amari network is built based on the CBF description to perform classification of planar shapes. The experimental results demonstrate that the proposed system is powerful and reliable for solving shape recognition problems.</description><subject>Associative memory</subject><subject>Computer vision</subject><subject>Counting circuits</subject><subject>Data mining</subject><subject>Feature extraction</subject><subject>Hopfield neural networks</subject><subject>Pattern analysis</subject><subject>Pattern recognition</subject><subject>Power system reliability</subject><subject>Shape</subject><isbn>0780332105</isbn><isbn>9780780332102</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>1996</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpjYJAwNNAzNDSw1Pd09vPTM7S0NNMzNbGwNDNkZuAyMLcwMDY2MjQw5WDgLS7OMgACE1NTI3NzTgYjR4XijMSCVIXknMTi4sy0zNQihaTE4tQUhfw8BY_8AqBAToquY25iUaZCXmpJeX5RNg8Da1piTnEqL5TmZpBycw1x9tDNTE1NjS8oygQqroyH2G6MVxIApJIylA</recordid><startdate>1996</startdate><enddate>1996</enddate><creator>Fu, A.M.N.</creator><creator>Hong Yan</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>1996</creationdate><title>A shape classifier based on Hopfield-Amari network</title><author>Fu, A.M.N. ; Hong Yan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ieee_primary_5489613</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>1996</creationdate><topic>Associative memory</topic><topic>Computer vision</topic><topic>Counting circuits</topic><topic>Data mining</topic><topic>Feature extraction</topic><topic>Hopfield neural networks</topic><topic>Pattern analysis</topic><topic>Pattern recognition</topic><topic>Power system reliability</topic><topic>Shape</topic><toplevel>online_resources</toplevel><creatorcontrib>Fu, A.M.N.</creatorcontrib><creatorcontrib>Hong Yan</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Fu, A.M.N.</au><au>Hong Yan</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A shape classifier based on Hopfield-Amari network</atitle><btitle>Proceedings of International Conference on Neural Networks (ICNN'96)</btitle><stitle>ICNN</stitle><date>1996</date><risdate>1996</risdate><volume>1</volume><spage>588</spage><epage>593 vol.1</epage><pages>588-593 vol.1</pages><isbn>0780332105</isbn><isbn>9780780332102</isbn><abstract>The representation and recognition of a planar shape based on contour information is an important issue in computer vision. We propose a method for extracting the main features of a contour using the curve bend function (CBF), which can be used to characterize the contour completely. A Hopfield-Amari network is built based on the CBF description to perform classification of planar shapes. The experimental results demonstrate that the proposed system is powerful and reliable for solving shape recognition problems.</abstract><pub>IEEE</pub><doi>10.1109/ICNN.1996.548961</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 0780332105
ispartof Proceedings of International Conference on Neural Networks (ICNN'96), 1996, Vol.1, p.588-593 vol.1
issn
language eng
recordid cdi_ieee_primary_548961
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Associative memory
Computer vision
Counting circuits
Data mining
Feature extraction
Hopfield neural networks
Pattern analysis
Pattern recognition
Power system reliability
Shape
title A shape classifier based on Hopfield-Amari network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T12%3A14%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20shape%20classifier%20based%20on%20Hopfield-Amari%20network&rft.btitle=Proceedings%20of%20International%20Conference%20on%20Neural%20Networks%20(ICNN'96)&rft.au=Fu,%20A.M.N.&rft.date=1996&rft.volume=1&rft.spage=588&rft.epage=593%20vol.1&rft.pages=588-593%20vol.1&rft.isbn=0780332105&rft.isbn_list=9780780332102&rft_id=info:doi/10.1109/ICNN.1996.548961&rft_dat=%3Cieee_6IE%3E548961%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=548961&rfr_iscdi=true