Remarks on Applicability of Spectral Representations on Finite Non-Abelian Groups in the Design for Regularity

In several publications, the use of non-Abelian groups has been suggested as a method to derive compact representations of logic functions. The compactness has been measured in the number of product terms in the case of functional expressions and the number of nodes, the width, and the interconnecti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Stankovic, Radomir S, Astola, Jaakko T, Moraga, Claudio
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 318
container_issue
container_start_page 313
container_title
container_volume
creator Stankovic, Radomir S
Astola, Jaakko T
Moraga, Claudio
description In several publications, the use of non-Abelian groups has been suggested as a method to derive compact representations of logic functions. The compactness has been measured in the number of product terms in the case of functional expressions and the number of nodes, the width, and the interconnections in the case of decision diagrams. In this paper, we discuss Fourier representations on finite non-Abelian groups in synthesis for regularity. The initial domain group for a logic function (binary or multiple-valued) is replaced by a non-Abelian group by encoding of variables. The function is then decomposed into matrix-valued Fourier coefficients, that are easy to implement as building blocks over a technological platform with regular structure. We point out that spectral representation of non-Abelian groups is capable of capturing regularities in functions and transferring them in the spectral domain. In many cases, weak regularities in the original domain are converted into much stronger regularities in the spectral domain due to the regular structure of unitary irreducible group representations upon which the Fourier expressions are based.
doi_str_mv 10.1109/ISMVL.2010.64
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5489168</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5489168</ieee_id><sourcerecordid>5489168</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-488c46360d6737eb00585fd86c68aa2c92df81955c5318e65327d5d11670229b3</originalsourceid><addsrcrecordid>eNotj8tOwzAURM1Loi1dsmLjH0ixr59ZVoWWSgGkFhC7ykluiiE4kZMu-vdEwGo00syRDiHXnM04Z-ntevv4ls2ADV3LEzJNjWVGp0oykOqUjEAYmwCAPiNjLkFKbRSYczJiPFWJBvF-ScZd98kYMDBsRMIGv1386mgT6Lxta1-43Ne-P9KmotsWiz66mm6wjdhh6F3vm_A7Xvrge6RPTUjmOdbeBbqKzaHtqA-0_0B6h53fB1o1cbjvD7WLA_WKXFSu7nD6nxPyurx_WTwk2fNqvZhniedG9Ym0tpBaaFZqIwzmjCmrqtLqQlvnoEihrOxgpAoluEWtBJhSlZxrwwDSXEzIzR_XI-KujX6QPO6UtCnXVvwA_49chA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Remarks on Applicability of Spectral Representations on Finite Non-Abelian Groups in the Design for Regularity</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Stankovic, Radomir S ; Astola, Jaakko T ; Moraga, Claudio</creator><creatorcontrib>Stankovic, Radomir S ; Astola, Jaakko T ; Moraga, Claudio</creatorcontrib><description>In several publications, the use of non-Abelian groups has been suggested as a method to derive compact representations of logic functions. The compactness has been measured in the number of product terms in the case of functional expressions and the number of nodes, the width, and the interconnections in the case of decision diagrams. In this paper, we discuss Fourier representations on finite non-Abelian groups in synthesis for regularity. The initial domain group for a logic function (binary or multiple-valued) is replaced by a non-Abelian group by encoding of variables. The function is then decomposed into matrix-valued Fourier coefficients, that are easy to implement as building blocks over a technological platform with regular structure. We point out that spectral representation of non-Abelian groups is capable of capturing regularities in functions and transferring them in the spectral domain. In many cases, weak regularities in the original domain are converted into much stronger regularities in the spectral domain due to the regular structure of unitary irreducible group representations upon which the Fourier expressions are based.</description><identifier>ISSN: 0195-623X</identifier><identifier>ISBN: 1424467527</identifier><identifier>ISBN: 9781424467525</identifier><identifier>EISSN: 2378-2226</identifier><identifier>EISBN: 9780769540245</identifier><identifier>EISBN: 0769540244</identifier><identifier>EISBN: 1424467535</identifier><identifier>EISBN: 9781424467532</identifier><identifier>DOI: 10.1109/ISMVL.2010.64</identifier><language>eng</language><publisher>IEEE</publisher><subject>Application specific integrated circuits ; Computer science ; Encoding ; Field programmable gate arrays ; Logic circuits ; Logic design ; Logic functions ; Programmable logic arrays ; Signal design ; Signal processing</subject><ispartof>2010 40th IEEE International Symposium on Multiple-Valued Logic, 2010, p.313-318</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5489168$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>310,311,781,785,790,791,2059,27930,54925</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5489168$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Stankovic, Radomir S</creatorcontrib><creatorcontrib>Astola, Jaakko T</creatorcontrib><creatorcontrib>Moraga, Claudio</creatorcontrib><title>Remarks on Applicability of Spectral Representations on Finite Non-Abelian Groups in the Design for Regularity</title><title>2010 40th IEEE International Symposium on Multiple-Valued Logic</title><addtitle>ISMVL</addtitle><description>In several publications, the use of non-Abelian groups has been suggested as a method to derive compact representations of logic functions. The compactness has been measured in the number of product terms in the case of functional expressions and the number of nodes, the width, and the interconnections in the case of decision diagrams. In this paper, we discuss Fourier representations on finite non-Abelian groups in synthesis for regularity. The initial domain group for a logic function (binary or multiple-valued) is replaced by a non-Abelian group by encoding of variables. The function is then decomposed into matrix-valued Fourier coefficients, that are easy to implement as building blocks over a technological platform with regular structure. We point out that spectral representation of non-Abelian groups is capable of capturing regularities in functions and transferring them in the spectral domain. In many cases, weak regularities in the original domain are converted into much stronger regularities in the spectral domain due to the regular structure of unitary irreducible group representations upon which the Fourier expressions are based.</description><subject>Application specific integrated circuits</subject><subject>Computer science</subject><subject>Encoding</subject><subject>Field programmable gate arrays</subject><subject>Logic circuits</subject><subject>Logic design</subject><subject>Logic functions</subject><subject>Programmable logic arrays</subject><subject>Signal design</subject><subject>Signal processing</subject><issn>0195-623X</issn><issn>2378-2226</issn><isbn>1424467527</isbn><isbn>9781424467525</isbn><isbn>9780769540245</isbn><isbn>0769540244</isbn><isbn>1424467535</isbn><isbn>9781424467532</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj8tOwzAURM1Loi1dsmLjH0ixr59ZVoWWSgGkFhC7ykluiiE4kZMu-vdEwGo00syRDiHXnM04Z-ntevv4ls2ADV3LEzJNjWVGp0oykOqUjEAYmwCAPiNjLkFKbRSYczJiPFWJBvF-ScZd98kYMDBsRMIGv1386mgT6Lxta1-43Ne-P9KmotsWiz66mm6wjdhh6F3vm_A7Xvrge6RPTUjmOdbeBbqKzaHtqA-0_0B6h53fB1o1cbjvD7WLA_WKXFSu7nD6nxPyurx_WTwk2fNqvZhniedG9Ym0tpBaaFZqIwzmjCmrqtLqQlvnoEihrOxgpAoluEWtBJhSlZxrwwDSXEzIzR_XI-KujX6QPO6UtCnXVvwA_49chA</recordid><startdate>201005</startdate><enddate>201005</enddate><creator>Stankovic, Radomir S</creator><creator>Astola, Jaakko T</creator><creator>Moraga, Claudio</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201005</creationdate><title>Remarks on Applicability of Spectral Representations on Finite Non-Abelian Groups in the Design for Regularity</title><author>Stankovic, Radomir S ; Astola, Jaakko T ; Moraga, Claudio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-488c46360d6737eb00585fd86c68aa2c92df81955c5318e65327d5d11670229b3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Application specific integrated circuits</topic><topic>Computer science</topic><topic>Encoding</topic><topic>Field programmable gate arrays</topic><topic>Logic circuits</topic><topic>Logic design</topic><topic>Logic functions</topic><topic>Programmable logic arrays</topic><topic>Signal design</topic><topic>Signal processing</topic><toplevel>online_resources</toplevel><creatorcontrib>Stankovic, Radomir S</creatorcontrib><creatorcontrib>Astola, Jaakko T</creatorcontrib><creatorcontrib>Moraga, Claudio</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Stankovic, Radomir S</au><au>Astola, Jaakko T</au><au>Moraga, Claudio</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Remarks on Applicability of Spectral Representations on Finite Non-Abelian Groups in the Design for Regularity</atitle><btitle>2010 40th IEEE International Symposium on Multiple-Valued Logic</btitle><stitle>ISMVL</stitle><date>2010-05</date><risdate>2010</risdate><spage>313</spage><epage>318</epage><pages>313-318</pages><issn>0195-623X</issn><eissn>2378-2226</eissn><isbn>1424467527</isbn><isbn>9781424467525</isbn><eisbn>9780769540245</eisbn><eisbn>0769540244</eisbn><eisbn>1424467535</eisbn><eisbn>9781424467532</eisbn><abstract>In several publications, the use of non-Abelian groups has been suggested as a method to derive compact representations of logic functions. The compactness has been measured in the number of product terms in the case of functional expressions and the number of nodes, the width, and the interconnections in the case of decision diagrams. In this paper, we discuss Fourier representations on finite non-Abelian groups in synthesis for regularity. The initial domain group for a logic function (binary or multiple-valued) is replaced by a non-Abelian group by encoding of variables. The function is then decomposed into matrix-valued Fourier coefficients, that are easy to implement as building blocks over a technological platform with regular structure. We point out that spectral representation of non-Abelian groups is capable of capturing regularities in functions and transferring them in the spectral domain. In many cases, weak regularities in the original domain are converted into much stronger regularities in the spectral domain due to the regular structure of unitary irreducible group representations upon which the Fourier expressions are based.</abstract><pub>IEEE</pub><doi>10.1109/ISMVL.2010.64</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0195-623X
ispartof 2010 40th IEEE International Symposium on Multiple-Valued Logic, 2010, p.313-318
issn 0195-623X
2378-2226
language eng
recordid cdi_ieee_primary_5489168
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Application specific integrated circuits
Computer science
Encoding
Field programmable gate arrays
Logic circuits
Logic design
Logic functions
Programmable logic arrays
Signal design
Signal processing
title Remarks on Applicability of Spectral Representations on Finite Non-Abelian Groups in the Design for Regularity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T06%3A39%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Remarks%20on%20Applicability%20of%20Spectral%20Representations%20on%20Finite%20Non-Abelian%20Groups%20in%20the%20Design%20for%20Regularity&rft.btitle=2010%2040th%20IEEE%20International%20Symposium%20on%20Multiple-Valued%20Logic&rft.au=Stankovic,%20Radomir%20S&rft.date=2010-05&rft.spage=313&rft.epage=318&rft.pages=313-318&rft.issn=0195-623X&rft.eissn=2378-2226&rft.isbn=1424467527&rft.isbn_list=9781424467525&rft_id=info:doi/10.1109/ISMVL.2010.64&rft_dat=%3Cieee_6IE%3E5489168%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9780769540245&rft.eisbn_list=0769540244&rft.eisbn_list=1424467535&rft.eisbn_list=9781424467532&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5489168&rfr_iscdi=true