Estimation-Correction scheme based articulated object tracking using SIFT features and mean shift algorithm

Object tracking plays an important role in video surveillance system. However, in the field of object tracking, complex object motion and object occlusions still remains challenging topics. This paper proposes a Estimation-Correction (EC) object tracking scheme in real scenarios, combining the stren...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Ying Lu, Chengjiao Guo, Ikenaga, T
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 280
container_issue
container_start_page 275
container_title
container_volume
creator Ying Lu
Chengjiao Guo
Ikenaga, T
description Object tracking plays an important role in video surveillance system. However, in the field of object tracking, complex object motion and object occlusions still remains challenging topics. This paper proposes a Estimation-Correction (EC) object tracking scheme in real scenarios, combining the strength of scale invariant feature transform (SIFT) and mean shift algorithm. The corresponding SIFT features are used to estimate the position of the target candidate by the scale and space relation between each pair of features. Then mean shift is applied to conduct the local similarity search so as to find a right position and size of estimated candidate with a maximum likelihood. Experiment results demonstrate that the proposed SIFT/mean shift strategy keeps the tracking error in average 8 pixels and improves the tracking performance compared with the traditional SIFT and mean shift algorithm when tracking objects with complex motion and full occlusion.
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5488608</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5488608</ieee_id><sourcerecordid>5488608</sourcerecordid><originalsourceid>FETCH-ieee_primary_54886083</originalsourceid><addsrcrecordid>eNp9js0OgjAQhGuMiUZ5Ai_7AiaCpZQzgehZ72aBBcqvacvBt7cYz85hZza7mXwr5sWRlLGUIpJ-JNbf3ecB5yKWgdgyz5j27MTDIORix7rUWDWgVdN4SiatqVgimKKhgSBHQyWgtqqYe7QuT3nrXsBqLDo11jCbZd5v2QMqQjtrMoBjCQOha2lUZQH7etLKNsOBbSrsDXk_37Njlj6S60kR0fOlHYd-P0Pu6M_y8v_6AUbmR1U</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Estimation-Correction scheme based articulated object tracking using SIFT features and mean shift algorithm</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Ying Lu ; Chengjiao Guo ; Ikenaga, T</creator><creatorcontrib>Ying Lu ; Chengjiao Guo ; Ikenaga, T</creatorcontrib><description>Object tracking plays an important role in video surveillance system. However, in the field of object tracking, complex object motion and object occlusions still remains challenging topics. This paper proposes a Estimation-Correction (EC) object tracking scheme in real scenarios, combining the strength of scale invariant feature transform (SIFT) and mean shift algorithm. The corresponding SIFT features are used to estimate the position of the target candidate by the scale and space relation between each pair of features. Then mean shift is applied to conduct the local similarity search so as to find a right position and size of estimated candidate with a maximum likelihood. Experiment results demonstrate that the proposed SIFT/mean shift strategy keeps the tracking error in average 8 pixels and improves the tracking performance compared with the traditional SIFT and mean shift algorithm when tracking objects with complex motion and full occlusion.</description><identifier>ISBN: 9781424469826</identifier><identifier>ISBN: 1424469821</identifier><identifier>EISBN: 9788988678176</identifier><identifier>EISBN: 8988678176</identifier><language>eng</language><publisher>IEEE</publisher><subject>articulated object tracking ; Computer vision ; Distributed computing ; Kernel ; Layout ; Maximum likelihood detection ; Maximum likelihood estimation ; Mean Shift Algorithm ; Production systems ; Robustness ; SIFT features ; Target tracking ; Video surveillance</subject><ispartof>4th International Conference on New Trends in Information Science and Service Science, 2010, p.275-280</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5488608$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,777,781,786,787,2052,54901</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5488608$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ying Lu</creatorcontrib><creatorcontrib>Chengjiao Guo</creatorcontrib><creatorcontrib>Ikenaga, T</creatorcontrib><title>Estimation-Correction scheme based articulated object tracking using SIFT features and mean shift algorithm</title><title>4th International Conference on New Trends in Information Science and Service Science</title><addtitle>NISS</addtitle><description>Object tracking plays an important role in video surveillance system. However, in the field of object tracking, complex object motion and object occlusions still remains challenging topics. This paper proposes a Estimation-Correction (EC) object tracking scheme in real scenarios, combining the strength of scale invariant feature transform (SIFT) and mean shift algorithm. The corresponding SIFT features are used to estimate the position of the target candidate by the scale and space relation between each pair of features. Then mean shift is applied to conduct the local similarity search so as to find a right position and size of estimated candidate with a maximum likelihood. Experiment results demonstrate that the proposed SIFT/mean shift strategy keeps the tracking error in average 8 pixels and improves the tracking performance compared with the traditional SIFT and mean shift algorithm when tracking objects with complex motion and full occlusion.</description><subject>articulated object tracking</subject><subject>Computer vision</subject><subject>Distributed computing</subject><subject>Kernel</subject><subject>Layout</subject><subject>Maximum likelihood detection</subject><subject>Maximum likelihood estimation</subject><subject>Mean Shift Algorithm</subject><subject>Production systems</subject><subject>Robustness</subject><subject>SIFT features</subject><subject>Target tracking</subject><subject>Video surveillance</subject><isbn>9781424469826</isbn><isbn>1424469821</isbn><isbn>9788988678176</isbn><isbn>8988678176</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNp9js0OgjAQhGuMiUZ5Ai_7AiaCpZQzgehZ72aBBcqvacvBt7cYz85hZza7mXwr5sWRlLGUIpJ-JNbf3ecB5yKWgdgyz5j27MTDIORix7rUWDWgVdN4SiatqVgimKKhgSBHQyWgtqqYe7QuT3nrXsBqLDo11jCbZd5v2QMqQjtrMoBjCQOha2lUZQH7etLKNsOBbSrsDXk_37Njlj6S60kR0fOlHYd-P0Pu6M_y8v_6AUbmR1U</recordid><startdate>201005</startdate><enddate>201005</enddate><creator>Ying Lu</creator><creator>Chengjiao Guo</creator><creator>Ikenaga, T</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201005</creationdate><title>Estimation-Correction scheme based articulated object tracking using SIFT features and mean shift algorithm</title><author>Ying Lu ; Chengjiao Guo ; Ikenaga, T</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ieee_primary_54886083</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>articulated object tracking</topic><topic>Computer vision</topic><topic>Distributed computing</topic><topic>Kernel</topic><topic>Layout</topic><topic>Maximum likelihood detection</topic><topic>Maximum likelihood estimation</topic><topic>Mean Shift Algorithm</topic><topic>Production systems</topic><topic>Robustness</topic><topic>SIFT features</topic><topic>Target tracking</topic><topic>Video surveillance</topic><toplevel>online_resources</toplevel><creatorcontrib>Ying Lu</creatorcontrib><creatorcontrib>Chengjiao Guo</creatorcontrib><creatorcontrib>Ikenaga, T</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ying Lu</au><au>Chengjiao Guo</au><au>Ikenaga, T</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Estimation-Correction scheme based articulated object tracking using SIFT features and mean shift algorithm</atitle><btitle>4th International Conference on New Trends in Information Science and Service Science</btitle><stitle>NISS</stitle><date>2010-05</date><risdate>2010</risdate><spage>275</spage><epage>280</epage><pages>275-280</pages><isbn>9781424469826</isbn><isbn>1424469821</isbn><eisbn>9788988678176</eisbn><eisbn>8988678176</eisbn><abstract>Object tracking plays an important role in video surveillance system. However, in the field of object tracking, complex object motion and object occlusions still remains challenging topics. This paper proposes a Estimation-Correction (EC) object tracking scheme in real scenarios, combining the strength of scale invariant feature transform (SIFT) and mean shift algorithm. The corresponding SIFT features are used to estimate the position of the target candidate by the scale and space relation between each pair of features. Then mean shift is applied to conduct the local similarity search so as to find a right position and size of estimated candidate with a maximum likelihood. Experiment results demonstrate that the proposed SIFT/mean shift strategy keeps the tracking error in average 8 pixels and improves the tracking performance compared with the traditional SIFT and mean shift algorithm when tracking objects with complex motion and full occlusion.</abstract><pub>IEEE</pub></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9781424469826
ispartof 4th International Conference on New Trends in Information Science and Service Science, 2010, p.275-280
issn
language eng
recordid cdi_ieee_primary_5488608
source IEEE Electronic Library (IEL) Conference Proceedings
subjects articulated object tracking
Computer vision
Distributed computing
Kernel
Layout
Maximum likelihood detection
Maximum likelihood estimation
Mean Shift Algorithm
Production systems
Robustness
SIFT features
Target tracking
Video surveillance
title Estimation-Correction scheme based articulated object tracking using SIFT features and mean shift algorithm
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T15%3A24%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Estimation-Correction%20scheme%20based%20articulated%20object%20tracking%20using%20SIFT%20features%20and%20mean%20shift%20algorithm&rft.btitle=4th%20International%20Conference%20on%20New%20Trends%20in%20Information%20Science%20and%20Service%20Science&rft.au=Ying%20Lu&rft.date=2010-05&rft.spage=275&rft.epage=280&rft.pages=275-280&rft.isbn=9781424469826&rft.isbn_list=1424469821&rft_id=info:doi/&rft_dat=%3Cieee_6IE%3E5488608%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9788988678176&rft.eisbn_list=8988678176&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5488608&rfr_iscdi=true