Grid task scheduling based on constraint satisfaction neural network

Task scheduling is of great significance to shorten performing time and minimize the cost for computational Grid. A grid task schedule algorithm is presented in this paper, which is based on a constraint satisfaction neural network. The constraint satisfaction means to remove the violations for sequ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Dong Yueli, Guo Quan
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 515
container_issue
container_start_page 513
container_title
container_volume 1
creator Dong Yueli
Guo Quan
description Task scheduling is of great significance to shorten performing time and minimize the cost for computational Grid. A grid task schedule algorithm is presented in this paper, which is based on a constraint satisfaction neural network. The constraint satisfaction means to remove the violations for sequence and resource constraints during scheduling subtasks for grid environment. The data-transferring costs among subtasks are also considered in our task scheduling. The simulation in this paper has shown that the task schedule algorithm is efficient with respect to the quality of solutions and the solving speed.
doi_str_mv 10.1109/ICACC.2010.5487161
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5487161</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5487161</ieee_id><sourcerecordid>5487161</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-d7769dac71673085409c0d56713c26ee1ecd1673ed471d605cfc747e7d4a20c73</originalsourceid><addsrcrecordid>eNo1T8FKxDAUjIigrv0BveQHuua1SV56lKqrsOBFz0tMXjVubSXJIv69kV3nMswMDDOMXYJYAoju-rG_6ftlI4pW0iBoOGJVhwZkI6Uy0uhjdv4vlDplVUofokCqRhs4Y7erGDzPNm15cu_kd2OY3virTeT5PHE3TylHG6bMk80hDdblUPyJdtGOhfL3HLcX7GSwY6LqwAv2cn_33D_U66dVWbiuA6DKtUfUnbeuzMRWGCVF54RXGqF1jSYCcv4vIi8RvBbKDQ4lEnppG-GwXbCrfW8gos1XDJ82_mwOx9tfhkNMQA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Grid task scheduling based on constraint satisfaction neural network</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Dong Yueli ; Guo Quan</creator><creatorcontrib>Dong Yueli ; Guo Quan</creatorcontrib><description>Task scheduling is of great significance to shorten performing time and minimize the cost for computational Grid. A grid task schedule algorithm is presented in this paper, which is based on a constraint satisfaction neural network. The constraint satisfaction means to remove the violations for sequence and resource constraints during scheduling subtasks for grid environment. The data-transferring costs among subtasks are also considered in our task scheduling. The simulation in this paper has shown that the task schedule algorithm is efficient with respect to the quality of solutions and the solving speed.</description><identifier>ISBN: 1424458455</identifier><identifier>ISBN: 9781424458455</identifier><identifier>EISBN: 9781424458486</identifier><identifier>EISBN: 1424458471</identifier><identifier>EISBN: 9781424458479</identifier><identifier>EISBN: 142445848X</identifier><identifier>DOI: 10.1109/ICACC.2010.5487161</identifier><language>eng</language><publisher>IEEE</publisher><subject>Computational efficiency ; Computer networks ; Computer science ; constraint ; Costs ; grid ; Grid computing ; neural network ; Neural networks ; Neurons ; Processor scheduling ; Scheduling algorithm ; System recovery ; task scheduling</subject><ispartof>2010 2nd International Conference on Advanced Computer Control, 2010, Vol.1, p.513-515</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5487161$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5487161$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Dong Yueli</creatorcontrib><creatorcontrib>Guo Quan</creatorcontrib><title>Grid task scheduling based on constraint satisfaction neural network</title><title>2010 2nd International Conference on Advanced Computer Control</title><addtitle>ICACC</addtitle><description>Task scheduling is of great significance to shorten performing time and minimize the cost for computational Grid. A grid task schedule algorithm is presented in this paper, which is based on a constraint satisfaction neural network. The constraint satisfaction means to remove the violations for sequence and resource constraints during scheduling subtasks for grid environment. The data-transferring costs among subtasks are also considered in our task scheduling. The simulation in this paper has shown that the task schedule algorithm is efficient with respect to the quality of solutions and the solving speed.</description><subject>Computational efficiency</subject><subject>Computer networks</subject><subject>Computer science</subject><subject>constraint</subject><subject>Costs</subject><subject>grid</subject><subject>Grid computing</subject><subject>neural network</subject><subject>Neural networks</subject><subject>Neurons</subject><subject>Processor scheduling</subject><subject>Scheduling algorithm</subject><subject>System recovery</subject><subject>task scheduling</subject><isbn>1424458455</isbn><isbn>9781424458455</isbn><isbn>9781424458486</isbn><isbn>1424458471</isbn><isbn>9781424458479</isbn><isbn>142445848X</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1T8FKxDAUjIigrv0BveQHuua1SV56lKqrsOBFz0tMXjVubSXJIv69kV3nMswMDDOMXYJYAoju-rG_6ftlI4pW0iBoOGJVhwZkI6Uy0uhjdv4vlDplVUofokCqRhs4Y7erGDzPNm15cu_kd2OY3virTeT5PHE3TylHG6bMk80hDdblUPyJdtGOhfL3HLcX7GSwY6LqwAv2cn_33D_U66dVWbiuA6DKtUfUnbeuzMRWGCVF54RXGqF1jSYCcv4vIi8RvBbKDQ4lEnppG-GwXbCrfW8gos1XDJ82_mwOx9tfhkNMQA</recordid><startdate>201003</startdate><enddate>201003</enddate><creator>Dong Yueli</creator><creator>Guo Quan</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201003</creationdate><title>Grid task scheduling based on constraint satisfaction neural network</title><author>Dong Yueli ; Guo Quan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-d7769dac71673085409c0d56713c26ee1ecd1673ed471d605cfc747e7d4a20c73</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Computational efficiency</topic><topic>Computer networks</topic><topic>Computer science</topic><topic>constraint</topic><topic>Costs</topic><topic>grid</topic><topic>Grid computing</topic><topic>neural network</topic><topic>Neural networks</topic><topic>Neurons</topic><topic>Processor scheduling</topic><topic>Scheduling algorithm</topic><topic>System recovery</topic><topic>task scheduling</topic><toplevel>online_resources</toplevel><creatorcontrib>Dong Yueli</creatorcontrib><creatorcontrib>Guo Quan</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Dong Yueli</au><au>Guo Quan</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Grid task scheduling based on constraint satisfaction neural network</atitle><btitle>2010 2nd International Conference on Advanced Computer Control</btitle><stitle>ICACC</stitle><date>2010-03</date><risdate>2010</risdate><volume>1</volume><spage>513</spage><epage>515</epage><pages>513-515</pages><isbn>1424458455</isbn><isbn>9781424458455</isbn><eisbn>9781424458486</eisbn><eisbn>1424458471</eisbn><eisbn>9781424458479</eisbn><eisbn>142445848X</eisbn><abstract>Task scheduling is of great significance to shorten performing time and minimize the cost for computational Grid. A grid task schedule algorithm is presented in this paper, which is based on a constraint satisfaction neural network. The constraint satisfaction means to remove the violations for sequence and resource constraints during scheduling subtasks for grid environment. The data-transferring costs among subtasks are also considered in our task scheduling. The simulation in this paper has shown that the task schedule algorithm is efficient with respect to the quality of solutions and the solving speed.</abstract><pub>IEEE</pub><doi>10.1109/ICACC.2010.5487161</doi><tpages>3</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 1424458455
ispartof 2010 2nd International Conference on Advanced Computer Control, 2010, Vol.1, p.513-515
issn
language eng
recordid cdi_ieee_primary_5487161
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Computational efficiency
Computer networks
Computer science
constraint
Costs
grid
Grid computing
neural network
Neural networks
Neurons
Processor scheduling
Scheduling algorithm
System recovery
task scheduling
title Grid task scheduling based on constraint satisfaction neural network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T07%3A24%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Grid%20task%20scheduling%20based%20on%20constraint%20satisfaction%20neural%20network&rft.btitle=2010%202nd%20International%20Conference%20on%20Advanced%20Computer%20Control&rft.au=Dong%20Yueli&rft.date=2010-03&rft.volume=1&rft.spage=513&rft.epage=515&rft.pages=513-515&rft.isbn=1424458455&rft.isbn_list=9781424458455&rft_id=info:doi/10.1109/ICACC.2010.5487161&rft_dat=%3Cieee_6IE%3E5487161%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424458486&rft.eisbn_list=1424458471&rft.eisbn_list=9781424458479&rft.eisbn_list=142445848X&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5487161&rfr_iscdi=true