Automatic extraction and incorporation of purpose data into PurposeNet

PurposeNet is a knowledge base of objects and actions in which the knowledge is organized around purpose. Such knowledge also connects with language - namely, verbs for related actions. It can be used with an embedded reasoner, resulting in an effective system for QA, topic-listing, summarization an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Mayee, P K, Sangal, R, Paul, S
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page V6-158
container_issue
container_start_page V6-154
container_title
container_volume 6
creator Mayee, P K
Sangal, R
Paul, S
description PurposeNet is a knowledge base of objects and actions in which the knowledge is organized around purpose. Such knowledge also connects with language - namely, verbs for related actions. It can be used with an embedded reasoner, resulting in an effective system for QA, topic-listing, summarization and other tasks. However, extracting PurposeNet related data manually is time-consuming, labor-intensive, and expensive. This paper describes a framework for automatic purpose data extraction, given a corpus. It identifies a set of lexico-syntactic patterns that are easily recognizable, that occur frequently and across text genre boundaries, and that indisputably indicate the lexical relation of purpose data. It also deals with the subsequent automatic incorporation of this data into the PurposeNet resource. The results are used to augment and critique the structure of a large hand-built resource. The cases where purpose data is incomplete has also been analyzed. The extent of success, in terms of richness of the resource, achieved in the process is also discussed.
doi_str_mv 10.1109/ICCET.2010.5486346
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5486346</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5486346</ieee_id><sourcerecordid>5486346</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-4a0ca16353dd445bb86ad9438327b9f9107d1511ce80b3e5d279277b8fa6c1a63</originalsourceid><addsrcrecordid>eNo1j91KAzEQRiMiqHVfQG_yAlsz-c9lWVotFPVi78tskoWI3ZTdFPTtXWz9buY7Z2BgCHkEtgRg7nnbNOt2ydnMSlotpL4i9yC5lHN3cE0qZ-w_G3FLqmn6ZHOk4trAHdmsTiUfsCRP43cZ0ZeUB4pDoGnweTzmEf9M7unxNOMUacCC87Zk-nE2b7E8kJsev6ZYXeaCtJt127zWu_eXbbPa1cmxUktkHkELJUKQUnWd1RicFFZw07neATMBFICPlnUiqsCN48Z0tkftAbVYkKfz2RRj3B_HdMDxZ3_5XPwCKk5M5A</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Automatic extraction and incorporation of purpose data into PurposeNet</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Mayee, P K ; Sangal, R ; Paul, S</creator><creatorcontrib>Mayee, P K ; Sangal, R ; Paul, S</creatorcontrib><description>PurposeNet is a knowledge base of objects and actions in which the knowledge is organized around purpose. Such knowledge also connects with language - namely, verbs for related actions. It can be used with an embedded reasoner, resulting in an effective system for QA, topic-listing, summarization and other tasks. However, extracting PurposeNet related data manually is time-consuming, labor-intensive, and expensive. This paper describes a framework for automatic purpose data extraction, given a corpus. It identifies a set of lexico-syntactic patterns that are easily recognizable, that occur frequently and across text genre boundaries, and that indisputably indicate the lexical relation of purpose data. It also deals with the subsequent automatic incorporation of this data into the PurposeNet resource. The results are used to augment and critique the structure of a large hand-built resource. The cases where purpose data is incomplete has also been analyzed. The extent of success, in terms of richness of the resource, achieved in the process is also discussed.</description><identifier>ISBN: 9781424463473</identifier><identifier>ISBN: 1424463475</identifier><identifier>EISBN: 1424463491</identifier><identifier>EISBN: 1424463483</identifier><identifier>EISBN: 9781424463480</identifier><identifier>EISBN: 9781424463497</identifier><identifier>DOI: 10.1109/ICCET.2010.5486346</identifier><language>eng</language><publisher>IEEE</publisher><subject>Classification ; Data mining ; Information Retrieval ; PurposeNet ; Supervised learning</subject><ispartof>2010 2nd International Conference on Computer Engineering and Technology, 2010, Vol.6, p.V6-154-V6-158</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5486346$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5486346$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Mayee, P K</creatorcontrib><creatorcontrib>Sangal, R</creatorcontrib><creatorcontrib>Paul, S</creatorcontrib><title>Automatic extraction and incorporation of purpose data into PurposeNet</title><title>2010 2nd International Conference on Computer Engineering and Technology</title><addtitle>ICCET</addtitle><description>PurposeNet is a knowledge base of objects and actions in which the knowledge is organized around purpose. Such knowledge also connects with language - namely, verbs for related actions. It can be used with an embedded reasoner, resulting in an effective system for QA, topic-listing, summarization and other tasks. However, extracting PurposeNet related data manually is time-consuming, labor-intensive, and expensive. This paper describes a framework for automatic purpose data extraction, given a corpus. It identifies a set of lexico-syntactic patterns that are easily recognizable, that occur frequently and across text genre boundaries, and that indisputably indicate the lexical relation of purpose data. It also deals with the subsequent automatic incorporation of this data into the PurposeNet resource. The results are used to augment and critique the structure of a large hand-built resource. The cases where purpose data is incomplete has also been analyzed. The extent of success, in terms of richness of the resource, achieved in the process is also discussed.</description><subject>Classification</subject><subject>Data mining</subject><subject>Information Retrieval</subject><subject>PurposeNet</subject><subject>Supervised learning</subject><isbn>9781424463473</isbn><isbn>1424463475</isbn><isbn>1424463491</isbn><isbn>1424463483</isbn><isbn>9781424463480</isbn><isbn>9781424463497</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1j91KAzEQRiMiqHVfQG_yAlsz-c9lWVotFPVi78tskoWI3ZTdFPTtXWz9buY7Z2BgCHkEtgRg7nnbNOt2ydnMSlotpL4i9yC5lHN3cE0qZ-w_G3FLqmn6ZHOk4trAHdmsTiUfsCRP43cZ0ZeUB4pDoGnweTzmEf9M7unxNOMUacCC87Zk-nE2b7E8kJsev6ZYXeaCtJt127zWu_eXbbPa1cmxUktkHkELJUKQUnWd1RicFFZw07neATMBFICPlnUiqsCN48Z0tkftAbVYkKfz2RRj3B_HdMDxZ3_5XPwCKk5M5A</recordid><startdate>201004</startdate><enddate>201004</enddate><creator>Mayee, P K</creator><creator>Sangal, R</creator><creator>Paul, S</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201004</creationdate><title>Automatic extraction and incorporation of purpose data into PurposeNet</title><author>Mayee, P K ; Sangal, R ; Paul, S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-4a0ca16353dd445bb86ad9438327b9f9107d1511ce80b3e5d279277b8fa6c1a63</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Classification</topic><topic>Data mining</topic><topic>Information Retrieval</topic><topic>PurposeNet</topic><topic>Supervised learning</topic><toplevel>online_resources</toplevel><creatorcontrib>Mayee, P K</creatorcontrib><creatorcontrib>Sangal, R</creatorcontrib><creatorcontrib>Paul, S</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Mayee, P K</au><au>Sangal, R</au><au>Paul, S</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Automatic extraction and incorporation of purpose data into PurposeNet</atitle><btitle>2010 2nd International Conference on Computer Engineering and Technology</btitle><stitle>ICCET</stitle><date>2010-04</date><risdate>2010</risdate><volume>6</volume><spage>V6-154</spage><epage>V6-158</epage><pages>V6-154-V6-158</pages><isbn>9781424463473</isbn><isbn>1424463475</isbn><eisbn>1424463491</eisbn><eisbn>1424463483</eisbn><eisbn>9781424463480</eisbn><eisbn>9781424463497</eisbn><abstract>PurposeNet is a knowledge base of objects and actions in which the knowledge is organized around purpose. Such knowledge also connects with language - namely, verbs for related actions. It can be used with an embedded reasoner, resulting in an effective system for QA, topic-listing, summarization and other tasks. However, extracting PurposeNet related data manually is time-consuming, labor-intensive, and expensive. This paper describes a framework for automatic purpose data extraction, given a corpus. It identifies a set of lexico-syntactic patterns that are easily recognizable, that occur frequently and across text genre boundaries, and that indisputably indicate the lexical relation of purpose data. It also deals with the subsequent automatic incorporation of this data into the PurposeNet resource. The results are used to augment and critique the structure of a large hand-built resource. The cases where purpose data is incomplete has also been analyzed. The extent of success, in terms of richness of the resource, achieved in the process is also discussed.</abstract><pub>IEEE</pub><doi>10.1109/ICCET.2010.5486346</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9781424463473
ispartof 2010 2nd International Conference on Computer Engineering and Technology, 2010, Vol.6, p.V6-154-V6-158
issn
language eng
recordid cdi_ieee_primary_5486346
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Classification
Data mining
Information Retrieval
PurposeNet
Supervised learning
title Automatic extraction and incorporation of purpose data into PurposeNet
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T14%3A02%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Automatic%20extraction%20and%20incorporation%20of%20purpose%20data%20into%20PurposeNet&rft.btitle=2010%202nd%20International%20Conference%20on%20Computer%20Engineering%20and%20Technology&rft.au=Mayee,%20P%20K&rft.date=2010-04&rft.volume=6&rft.spage=V6-154&rft.epage=V6-158&rft.pages=V6-154-V6-158&rft.isbn=9781424463473&rft.isbn_list=1424463475&rft_id=info:doi/10.1109/ICCET.2010.5486346&rft_dat=%3Cieee_6IE%3E5486346%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424463491&rft.eisbn_list=1424463483&rft.eisbn_list=9781424463480&rft.eisbn_list=9781424463497&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5486346&rfr_iscdi=true