Frame based object detection - an application for traffic monitoring
In this paper, we describe a system that is capable of detecting and segmenting objects from video frames which helps in traffic surveillance. Shadow is one of the problems faced by most of the object detection systems. It will affect the result of object detection and segmentation. Hence a shadow r...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | V3-12 |
---|---|
container_issue | |
container_start_page | V3-9 |
container_title | |
container_volume | 3 |
creator | Chin Hong Low Ming Kiat Lee Siak Wang Khor |
description | In this paper, we describe a system that is capable of detecting and segmenting objects from video frames which helps in traffic surveillance. Shadow is one of the problems faced by most of the object detection systems. It will affect the result of object detection and segmentation. Hence a shadow removal method is applied in the preprocessing phase of the system to amplify the accuracy of detection. MATLAB is the major platform for developing this system. By differentiating the background and foreground of the video scenes using MATLAB embedded functions, the foreground regions are segmented as the objects. The segmented objects are saved for further development of computer vision applications such as object recognition and classification. The proposed system is tested with four traffic video scenes and the experimental results show that the system works well with an accuracy of approximately 90% achieved. |
doi_str_mv | 10.1109/ICCET.2010.5485742 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5485742</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5485742</ieee_id><sourcerecordid>5485742</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-33bc6d91c7d780110f5fa5e69c4254803b951c72ac4e5821a1c9cb0a4b4d12903</originalsourceid><addsrcrecordid>eNo1T81OwzAYC0KTgNEXgEteoCM_X5rmiMo2Jk3i0vv0JU2mTOuP0l54eyIYvli2Jcsm5IWzDefMvB2aZttuBMtaQa00iDvyxEEAVBIMvyeF0fW_1vKBFPN8YRmgRKX5I_nYJew9tTj7jo724t1CO79kiuNAS4oDxWm6Roe_RhgTXRKGEB3txyEuY4rD-ZmsAl5nX9x4Tdrdtm0-y-PX_tC8H8to2FJKaV3VGe50p2uW5wcVUPnKOBB5PJPWqBwKdOBVLThyZ5xlCBY6LgyTa_L6Vxu996cpxR7T9-n2W_4AvBNLHA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Frame based object detection - an application for traffic monitoring</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Chin Hong Low ; Ming Kiat Lee ; Siak Wang Khor</creator><creatorcontrib>Chin Hong Low ; Ming Kiat Lee ; Siak Wang Khor</creatorcontrib><description>In this paper, we describe a system that is capable of detecting and segmenting objects from video frames which helps in traffic surveillance. Shadow is one of the problems faced by most of the object detection systems. It will affect the result of object detection and segmentation. Hence a shadow removal method is applied in the preprocessing phase of the system to amplify the accuracy of detection. MATLAB is the major platform for developing this system. By differentiating the background and foreground of the video scenes using MATLAB embedded functions, the foreground regions are segmented as the objects. The segmented objects are saved for further development of computer vision applications such as object recognition and classification. The proposed system is tested with four traffic video scenes and the experimental results show that the system works well with an accuracy of approximately 90% achieved.</description><identifier>ISBN: 9781424463473</identifier><identifier>ISBN: 1424463475</identifier><identifier>EISBN: 1424463491</identifier><identifier>EISBN: 1424463483</identifier><identifier>EISBN: 9781424463480</identifier><identifier>EISBN: 9781424463497</identifier><identifier>DOI: 10.1109/ICCET.2010.5485742</identifier><language>eng</language><publisher>IEEE</publisher><subject>Application software ; background subtraction ; Computer vision ; Face detection ; Layout ; MATLAB ; Monitoring ; Object detection ; Object recognition ; object segmentation ; Phase detection ; shadow removal ; Surveillance ; traffic flow monitoring</subject><ispartof>2010 2nd International Conference on Computer Engineering and Technology, 2010, Vol.3, p.V3-9-V3-12</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5485742$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5485742$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chin Hong Low</creatorcontrib><creatorcontrib>Ming Kiat Lee</creatorcontrib><creatorcontrib>Siak Wang Khor</creatorcontrib><title>Frame based object detection - an application for traffic monitoring</title><title>2010 2nd International Conference on Computer Engineering and Technology</title><addtitle>ICCET</addtitle><description>In this paper, we describe a system that is capable of detecting and segmenting objects from video frames which helps in traffic surveillance. Shadow is one of the problems faced by most of the object detection systems. It will affect the result of object detection and segmentation. Hence a shadow removal method is applied in the preprocessing phase of the system to amplify the accuracy of detection. MATLAB is the major platform for developing this system. By differentiating the background and foreground of the video scenes using MATLAB embedded functions, the foreground regions are segmented as the objects. The segmented objects are saved for further development of computer vision applications such as object recognition and classification. The proposed system is tested with four traffic video scenes and the experimental results show that the system works well with an accuracy of approximately 90% achieved.</description><subject>Application software</subject><subject>background subtraction</subject><subject>Computer vision</subject><subject>Face detection</subject><subject>Layout</subject><subject>MATLAB</subject><subject>Monitoring</subject><subject>Object detection</subject><subject>Object recognition</subject><subject>object segmentation</subject><subject>Phase detection</subject><subject>shadow removal</subject><subject>Surveillance</subject><subject>traffic flow monitoring</subject><isbn>9781424463473</isbn><isbn>1424463475</isbn><isbn>1424463491</isbn><isbn>1424463483</isbn><isbn>9781424463480</isbn><isbn>9781424463497</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1T81OwzAYC0KTgNEXgEteoCM_X5rmiMo2Jk3i0vv0JU2mTOuP0l54eyIYvli2Jcsm5IWzDefMvB2aZttuBMtaQa00iDvyxEEAVBIMvyeF0fW_1vKBFPN8YRmgRKX5I_nYJew9tTj7jo724t1CO79kiuNAS4oDxWm6Roe_RhgTXRKGEB3txyEuY4rD-ZmsAl5nX9x4Tdrdtm0-y-PX_tC8H8to2FJKaV3VGe50p2uW5wcVUPnKOBB5PJPWqBwKdOBVLThyZ5xlCBY6LgyTa_L6Vxu996cpxR7T9-n2W_4AvBNLHA</recordid><startdate>201004</startdate><enddate>201004</enddate><creator>Chin Hong Low</creator><creator>Ming Kiat Lee</creator><creator>Siak Wang Khor</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201004</creationdate><title>Frame based object detection - an application for traffic monitoring</title><author>Chin Hong Low ; Ming Kiat Lee ; Siak Wang Khor</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-33bc6d91c7d780110f5fa5e69c4254803b951c72ac4e5821a1c9cb0a4b4d12903</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Application software</topic><topic>background subtraction</topic><topic>Computer vision</topic><topic>Face detection</topic><topic>Layout</topic><topic>MATLAB</topic><topic>Monitoring</topic><topic>Object detection</topic><topic>Object recognition</topic><topic>object segmentation</topic><topic>Phase detection</topic><topic>shadow removal</topic><topic>Surveillance</topic><topic>traffic flow monitoring</topic><toplevel>online_resources</toplevel><creatorcontrib>Chin Hong Low</creatorcontrib><creatorcontrib>Ming Kiat Lee</creatorcontrib><creatorcontrib>Siak Wang Khor</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chin Hong Low</au><au>Ming Kiat Lee</au><au>Siak Wang Khor</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Frame based object detection - an application for traffic monitoring</atitle><btitle>2010 2nd International Conference on Computer Engineering and Technology</btitle><stitle>ICCET</stitle><date>2010-04</date><risdate>2010</risdate><volume>3</volume><spage>V3-9</spage><epage>V3-12</epage><pages>V3-9-V3-12</pages><isbn>9781424463473</isbn><isbn>1424463475</isbn><eisbn>1424463491</eisbn><eisbn>1424463483</eisbn><eisbn>9781424463480</eisbn><eisbn>9781424463497</eisbn><abstract>In this paper, we describe a system that is capable of detecting and segmenting objects from video frames which helps in traffic surveillance. Shadow is one of the problems faced by most of the object detection systems. It will affect the result of object detection and segmentation. Hence a shadow removal method is applied in the preprocessing phase of the system to amplify the accuracy of detection. MATLAB is the major platform for developing this system. By differentiating the background and foreground of the video scenes using MATLAB embedded functions, the foreground regions are segmented as the objects. The segmented objects are saved for further development of computer vision applications such as object recognition and classification. The proposed system is tested with four traffic video scenes and the experimental results show that the system works well with an accuracy of approximately 90% achieved.</abstract><pub>IEEE</pub><doi>10.1109/ICCET.2010.5485742</doi></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 9781424463473 |
ispartof | 2010 2nd International Conference on Computer Engineering and Technology, 2010, Vol.3, p.V3-9-V3-12 |
issn | |
language | eng |
recordid | cdi_ieee_primary_5485742 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Application software background subtraction Computer vision Face detection Layout MATLAB Monitoring Object detection Object recognition object segmentation Phase detection shadow removal Surveillance traffic flow monitoring |
title | Frame based object detection - an application for traffic monitoring |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T16%3A22%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Frame%20based%20object%20detection%20-%20an%20application%20for%20traffic%20monitoring&rft.btitle=2010%202nd%20International%20Conference%20on%20Computer%20Engineering%20and%20Technology&rft.au=Chin%20Hong%20Low&rft.date=2010-04&rft.volume=3&rft.spage=V3-9&rft.epage=V3-12&rft.pages=V3-9-V3-12&rft.isbn=9781424463473&rft.isbn_list=1424463475&rft_id=info:doi/10.1109/ICCET.2010.5485742&rft_dat=%3Cieee_6IE%3E5485742%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424463491&rft.eisbn_list=1424463483&rft.eisbn_list=9781424463480&rft.eisbn_list=9781424463497&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5485742&rfr_iscdi=true |