Identification of linear discrete time systems using linear recurrent neural networks

This paper considers the development of a neural time identification scheme for unknown linear dynamical systems using linear artificial neural networks. The neural networks model used in this paper is a linear recurrent model. The proposed identification scheme is based on minimization of the least...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Sebakhy, O.A., Kader, H.M.A., Youssef, W.A., Deghiedi, S.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 379 vol.1
container_issue
container_start_page 374
container_title
container_volume 1
creator Sebakhy, O.A.
Kader, H.M.A.
Youssef, W.A.
Deghiedi, S.
description This paper considers the development of a neural time identification scheme for unknown linear dynamical systems using linear artificial neural networks. The neural networks model used in this paper is a linear recurrent model. The proposed identification scheme is based on minimization of the least squares errors between the actual and the estimated parameters. The analysis and design of this system are discussed. The operating characteristics of the proposed recurrent neural networks for system identification are demonstrated via an example.
doi_str_mv 10.1109/ISIE.1996.548450
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_548450</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>548450</ieee_id><sourcerecordid>548450</sourcerecordid><originalsourceid>FETCH-LOGICAL-i104t-875bb534b945e5c22838dae617a26fe28c3e91c2f28c61a9577c45f1c255031a3</originalsourceid><addsrcrecordid>eNo1T81KxDAYDIigrnsXT3mB1nz5aZOjLKsWFjzonpc0_SLRtitJiuzbG1idywzDzMAQcgesBmDmoXvrtjUY09RKaqnYBblhrWaiQJorsk7pkxVIBZzBNdl3A845-OBsDseZHj0dw4w20iEkFzEjzWFCmk4p45ToksL88R-J6JYYS5_OuEQ7Fso_x_iVbsmlt2PC9R-vyP5p-755qXavz93mcVcFYDJXulV9r4TsjVSoHOda6MFiA63ljUeunUADjvuiGrBGta2TyhdHKSbAihW5P-8GRDx8xzDZeDqcj4tfOG1Peg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Identification of linear discrete time systems using linear recurrent neural networks</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Sebakhy, O.A. ; Kader, H.M.A. ; Youssef, W.A. ; Deghiedi, S.</creator><creatorcontrib>Sebakhy, O.A. ; Kader, H.M.A. ; Youssef, W.A. ; Deghiedi, S.</creatorcontrib><description>This paper considers the development of a neural time identification scheme for unknown linear dynamical systems using linear artificial neural networks. The neural networks model used in this paper is a linear recurrent model. The proposed identification scheme is based on minimization of the least squares errors between the actual and the estimated parameters. The analysis and design of this system are discussed. The operating characteristics of the proposed recurrent neural networks for system identification are demonstrated via an example.</description><identifier>ISBN: 0780333349</identifier><identifier>ISBN: 9780780333345</identifier><identifier>DOI: 10.1109/ISIE.1996.548450</identifier><language>eng</language><publisher>IEEE</publisher><subject>Discrete time systems ; Equations ; Least squares approximation ; Parameter estimation ; Recurrent neural networks ; Signal processing ; State estimation ; Time measurement ; Vectors ; Yield estimation</subject><ispartof>Proceedings of IEEE International Symposium on Industrial Electronics, 1996, Vol.1, p.374-379 vol.1</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/548450$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,4036,4037,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/548450$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Sebakhy, O.A.</creatorcontrib><creatorcontrib>Kader, H.M.A.</creatorcontrib><creatorcontrib>Youssef, W.A.</creatorcontrib><creatorcontrib>Deghiedi, S.</creatorcontrib><title>Identification of linear discrete time systems using linear recurrent neural networks</title><title>Proceedings of IEEE International Symposium on Industrial Electronics</title><addtitle>ISIE</addtitle><description>This paper considers the development of a neural time identification scheme for unknown linear dynamical systems using linear artificial neural networks. The neural networks model used in this paper is a linear recurrent model. The proposed identification scheme is based on minimization of the least squares errors between the actual and the estimated parameters. The analysis and design of this system are discussed. The operating characteristics of the proposed recurrent neural networks for system identification are demonstrated via an example.</description><subject>Discrete time systems</subject><subject>Equations</subject><subject>Least squares approximation</subject><subject>Parameter estimation</subject><subject>Recurrent neural networks</subject><subject>Signal processing</subject><subject>State estimation</subject><subject>Time measurement</subject><subject>Vectors</subject><subject>Yield estimation</subject><isbn>0780333349</isbn><isbn>9780780333345</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>1996</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1T81KxDAYDIigrnsXT3mB1nz5aZOjLKsWFjzonpc0_SLRtitJiuzbG1idywzDzMAQcgesBmDmoXvrtjUY09RKaqnYBblhrWaiQJorsk7pkxVIBZzBNdl3A845-OBsDseZHj0dw4w20iEkFzEjzWFCmk4p45ToksL88R-J6JYYS5_OuEQ7Fso_x_iVbsmlt2PC9R-vyP5p-755qXavz93mcVcFYDJXulV9r4TsjVSoHOda6MFiA63ljUeunUADjvuiGrBGta2TyhdHKSbAihW5P-8GRDx8xzDZeDqcj4tfOG1Peg</recordid><startdate>1996</startdate><enddate>1996</enddate><creator>Sebakhy, O.A.</creator><creator>Kader, H.M.A.</creator><creator>Youssef, W.A.</creator><creator>Deghiedi, S.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>1996</creationdate><title>Identification of linear discrete time systems using linear recurrent neural networks</title><author>Sebakhy, O.A. ; Kader, H.M.A. ; Youssef, W.A. ; Deghiedi, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i104t-875bb534b945e5c22838dae617a26fe28c3e91c2f28c61a9577c45f1c255031a3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>1996</creationdate><topic>Discrete time systems</topic><topic>Equations</topic><topic>Least squares approximation</topic><topic>Parameter estimation</topic><topic>Recurrent neural networks</topic><topic>Signal processing</topic><topic>State estimation</topic><topic>Time measurement</topic><topic>Vectors</topic><topic>Yield estimation</topic><toplevel>online_resources</toplevel><creatorcontrib>Sebakhy, O.A.</creatorcontrib><creatorcontrib>Kader, H.M.A.</creatorcontrib><creatorcontrib>Youssef, W.A.</creatorcontrib><creatorcontrib>Deghiedi, S.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sebakhy, O.A.</au><au>Kader, H.M.A.</au><au>Youssef, W.A.</au><au>Deghiedi, S.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Identification of linear discrete time systems using linear recurrent neural networks</atitle><btitle>Proceedings of IEEE International Symposium on Industrial Electronics</btitle><stitle>ISIE</stitle><date>1996</date><risdate>1996</risdate><volume>1</volume><spage>374</spage><epage>379 vol.1</epage><pages>374-379 vol.1</pages><isbn>0780333349</isbn><isbn>9780780333345</isbn><abstract>This paper considers the development of a neural time identification scheme for unknown linear dynamical systems using linear artificial neural networks. The neural networks model used in this paper is a linear recurrent model. The proposed identification scheme is based on minimization of the least squares errors between the actual and the estimated parameters. The analysis and design of this system are discussed. The operating characteristics of the proposed recurrent neural networks for system identification are demonstrated via an example.</abstract><pub>IEEE</pub><doi>10.1109/ISIE.1996.548450</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 0780333349
ispartof Proceedings of IEEE International Symposium on Industrial Electronics, 1996, Vol.1, p.374-379 vol.1
issn
language eng
recordid cdi_ieee_primary_548450
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Discrete time systems
Equations
Least squares approximation
Parameter estimation
Recurrent neural networks
Signal processing
State estimation
Time measurement
Vectors
Yield estimation
title Identification of linear discrete time systems using linear recurrent neural networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T12%3A54%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Identification%20of%20linear%20discrete%20time%20systems%20using%20linear%20recurrent%20neural%20networks&rft.btitle=Proceedings%20of%20IEEE%20International%20Symposium%20on%20Industrial%20Electronics&rft.au=Sebakhy,%20O.A.&rft.date=1996&rft.volume=1&rft.spage=374&rft.epage=379%20vol.1&rft.pages=374-379%20vol.1&rft.isbn=0780333349&rft.isbn_list=9780780333345&rft_id=info:doi/10.1109/ISIE.1996.548450&rft_dat=%3Cieee_6IE%3E548450%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=548450&rfr_iscdi=true