A Triaxial Accelerometer-Based Physical-Activity Recognition via Augmented-Signal Features and a Hierarchical Recognizer
Physical-activity recognition via wearable sensors can provide valuable information regarding an individual's degree of functional ability and lifestyle. In this paper, we present an accelerometer sensor-based approach for human-activity recognition. Our proposed recognition method uses a hiera...
Gespeichert in:
Veröffentlicht in: | IEEE journal of biomedical and health informatics 2010-09, Vol.14 (5), p.1166-1172 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1172 |
---|---|
container_issue | 5 |
container_start_page | 1166 |
container_title | IEEE journal of biomedical and health informatics |
container_volume | 14 |
creator | Khan, A M Young-Koo Lee Lee, S Y Tae-Seong Kim |
description | Physical-activity recognition via wearable sensors can provide valuable information regarding an individual's degree of functional ability and lifestyle. In this paper, we present an accelerometer sensor-based approach for human-activity recognition. Our proposed recognition method uses a hierarchical scheme. At the lower level, the state to which an activity belongs, i.e., static, transition, or dynamic, is recognized by means of statistical signal features and artificial-neural nets (ANNs). The upper level recognition uses the autoregressive (AR) modeling of the acceleration signals, thus, incorporating the derived AR-coefficients along with the signal-magnitude area and tilt angle to form an augmented-feature vector. The resulting feature vector is further processed by the linear-discriminant analysis and ANNs to recognize a particular human activity. Our proposed activity-recognition method recognizes three states and 15 activities with an average accuracy of 97.9% using only a single triaxial accelerometer attached to the subject's chest. |
doi_str_mv | 10.1109/TITB.2010.2051955 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_5482135</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5482135</ieee_id><sourcerecordid>2722307861</sourcerecordid><originalsourceid>FETCH-LOGICAL-c494t-d1bad52d611c6b0a4fae3e67a13434483b1828159ce2adf854c5647459c22da43</originalsourceid><addsrcrecordid>eNqFkV1LHDEUhkNpqVb7A0qhDHjRq7E5-ZhJLkepVRBa2vV6OJucXSPzYZMZcfvrm2VXL7zxKsnJ875weBj7BPwUgNtvi6vF2ang-Sm4Bqv1G3YIWpuScyne5js3tqzrGg7Yh5TuOAelQb5nBxkXttbykD02xSIGfAzYFY1z1FEce5oolmeYyBe_bjcpOOzKxk3hIUyb4je5cT2EKYxD8RCwaOZ1T8NEvvwT1kOuuSCc5kipwMEXWFwGihjd7bblKfyP4jF7t8Iu0cf9ecRuLr4vzi_L658_rs6b69Ipq6bSwxK9Fr4CcNWSo1ohSapqBKmkUkYuwQgD2joS6FdGK6crVas8EMKjkkfs6673Po5_Z0pT24eU9-xwoHFObW1qUSkL4nVSKw7CWpvJkxfk3TjHvHtqgQtrKm65zBTsKBfHlCKt2vsYeoybDLVbf-3WX7v11-795cyXffO87Mk_J56EZeDzDghE9PytlREgtfwPoj6ecA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1029860903</pqid></control><display><type>article</type><title>A Triaxial Accelerometer-Based Physical-Activity Recognition via Augmented-Signal Features and a Hierarchical Recognizer</title><source>IEEE Electronic Library (IEL)</source><creator>Khan, A M ; Young-Koo Lee ; Lee, S Y ; Tae-Seong Kim</creator><creatorcontrib>Khan, A M ; Young-Koo Lee ; Lee, S Y ; Tae-Seong Kim</creatorcontrib><description>Physical-activity recognition via wearable sensors can provide valuable information regarding an individual's degree of functional ability and lifestyle. In this paper, we present an accelerometer sensor-based approach for human-activity recognition. Our proposed recognition method uses a hierarchical scheme. At the lower level, the state to which an activity belongs, i.e., static, transition, or dynamic, is recognized by means of statistical signal features and artificial-neural nets (ANNs). The upper level recognition uses the autoregressive (AR) modeling of the acceleration signals, thus, incorporating the derived AR-coefficients along with the signal-magnitude area and tilt angle to form an augmented-feature vector. The resulting feature vector is further processed by the linear-discriminant analysis and ANNs to recognize a particular human activity. Our proposed activity-recognition method recognizes three states and 15 activities with an average accuracy of 97.9% using only a single triaxial accelerometer attached to the subject's chest.</description><identifier>ISSN: 1089-7771</identifier><identifier>ISSN: 2168-2194</identifier><identifier>EISSN: 1558-0032</identifier><identifier>EISSN: 2168-2208</identifier><identifier>DOI: 10.1109/TITB.2010.2051955</identifier><identifier>PMID: 20529753</identifier><identifier>CODEN: ITIBFX</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Acceleration ; Accelerometer ; Accelerometers ; Adult ; Artificial neural networks ; artificial-neural nets (ANNs) ; autoregressive (AR) modeling ; Computer vision ; Discriminant Analysis ; Female ; human-activity recognition ; Humans ; IEEE activities ; Legged locomotion ; Linear discriminant analysis ; Male ; Monitoring, Ambulatory - methods ; Motor Activity ; Neural Networks (Computer) ; Normal Distribution ; Regression Analysis ; Signal Processing, Computer-Assisted ; Vectors ; Wearable sensors</subject><ispartof>IEEE journal of biomedical and health informatics, 2010-09, Vol.14 (5), p.1166-1172</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Sep 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c494t-d1bad52d611c6b0a4fae3e67a13434483b1828159ce2adf854c5647459c22da43</citedby><cites>FETCH-LOGICAL-c494t-d1bad52d611c6b0a4fae3e67a13434483b1828159ce2adf854c5647459c22da43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5482135$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5482135$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20529753$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Khan, A M</creatorcontrib><creatorcontrib>Young-Koo Lee</creatorcontrib><creatorcontrib>Lee, S Y</creatorcontrib><creatorcontrib>Tae-Seong Kim</creatorcontrib><title>A Triaxial Accelerometer-Based Physical-Activity Recognition via Augmented-Signal Features and a Hierarchical Recognizer</title><title>IEEE journal of biomedical and health informatics</title><addtitle>TITB</addtitle><addtitle>IEEE Trans Inf Technol Biomed</addtitle><description>Physical-activity recognition via wearable sensors can provide valuable information regarding an individual's degree of functional ability and lifestyle. In this paper, we present an accelerometer sensor-based approach for human-activity recognition. Our proposed recognition method uses a hierarchical scheme. At the lower level, the state to which an activity belongs, i.e., static, transition, or dynamic, is recognized by means of statistical signal features and artificial-neural nets (ANNs). The upper level recognition uses the autoregressive (AR) modeling of the acceleration signals, thus, incorporating the derived AR-coefficients along with the signal-magnitude area and tilt angle to form an augmented-feature vector. The resulting feature vector is further processed by the linear-discriminant analysis and ANNs to recognize a particular human activity. Our proposed activity-recognition method recognizes three states and 15 activities with an average accuracy of 97.9% using only a single triaxial accelerometer attached to the subject's chest.</description><subject>Acceleration</subject><subject>Accelerometer</subject><subject>Accelerometers</subject><subject>Adult</subject><subject>Artificial neural networks</subject><subject>artificial-neural nets (ANNs)</subject><subject>autoregressive (AR) modeling</subject><subject>Computer vision</subject><subject>Discriminant Analysis</subject><subject>Female</subject><subject>human-activity recognition</subject><subject>Humans</subject><subject>IEEE activities</subject><subject>Legged locomotion</subject><subject>Linear discriminant analysis</subject><subject>Male</subject><subject>Monitoring, Ambulatory - methods</subject><subject>Motor Activity</subject><subject>Neural Networks (Computer)</subject><subject>Normal Distribution</subject><subject>Regression Analysis</subject><subject>Signal Processing, Computer-Assisted</subject><subject>Vectors</subject><subject>Wearable sensors</subject><issn>1089-7771</issn><issn>2168-2194</issn><issn>1558-0032</issn><issn>2168-2208</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNqFkV1LHDEUhkNpqVb7A0qhDHjRq7E5-ZhJLkepVRBa2vV6OJucXSPzYZMZcfvrm2VXL7zxKsnJ875weBj7BPwUgNtvi6vF2ang-Sm4Bqv1G3YIWpuScyne5js3tqzrGg7Yh5TuOAelQb5nBxkXttbykD02xSIGfAzYFY1z1FEce5oolmeYyBe_bjcpOOzKxk3hIUyb4je5cT2EKYxD8RCwaOZ1T8NEvvwT1kOuuSCc5kipwMEXWFwGihjd7bblKfyP4jF7t8Iu0cf9ecRuLr4vzi_L658_rs6b69Ipq6bSwxK9Fr4CcNWSo1ohSapqBKmkUkYuwQgD2joS6FdGK6crVas8EMKjkkfs6673Po5_Z0pT24eU9-xwoHFObW1qUSkL4nVSKw7CWpvJkxfk3TjHvHtqgQtrKm65zBTsKBfHlCKt2vsYeoybDLVbf-3WX7v11-795cyXffO87Mk_J56EZeDzDghE9PytlREgtfwPoj6ecA</recordid><startdate>201009</startdate><enddate>201009</enddate><creator>Khan, A M</creator><creator>Young-Koo Lee</creator><creator>Lee, S Y</creator><creator>Tae-Seong Kim</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><scope>7TS</scope></search><sort><creationdate>201009</creationdate><title>A Triaxial Accelerometer-Based Physical-Activity Recognition via Augmented-Signal Features and a Hierarchical Recognizer</title><author>Khan, A M ; Young-Koo Lee ; Lee, S Y ; Tae-Seong Kim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c494t-d1bad52d611c6b0a4fae3e67a13434483b1828159ce2adf854c5647459c22da43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Acceleration</topic><topic>Accelerometer</topic><topic>Accelerometers</topic><topic>Adult</topic><topic>Artificial neural networks</topic><topic>artificial-neural nets (ANNs)</topic><topic>autoregressive (AR) modeling</topic><topic>Computer vision</topic><topic>Discriminant Analysis</topic><topic>Female</topic><topic>human-activity recognition</topic><topic>Humans</topic><topic>IEEE activities</topic><topic>Legged locomotion</topic><topic>Linear discriminant analysis</topic><topic>Male</topic><topic>Monitoring, Ambulatory - methods</topic><topic>Motor Activity</topic><topic>Neural Networks (Computer)</topic><topic>Normal Distribution</topic><topic>Regression Analysis</topic><topic>Signal Processing, Computer-Assisted</topic><topic>Vectors</topic><topic>Wearable sensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khan, A M</creatorcontrib><creatorcontrib>Young-Koo Lee</creatorcontrib><creatorcontrib>Lee, S Y</creatorcontrib><creatorcontrib>Tae-Seong Kim</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Physical Education Index</collection><jtitle>IEEE journal of biomedical and health informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Khan, A M</au><au>Young-Koo Lee</au><au>Lee, S Y</au><au>Tae-Seong Kim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Triaxial Accelerometer-Based Physical-Activity Recognition via Augmented-Signal Features and a Hierarchical Recognizer</atitle><jtitle>IEEE journal of biomedical and health informatics</jtitle><stitle>TITB</stitle><addtitle>IEEE Trans Inf Technol Biomed</addtitle><date>2010-09</date><risdate>2010</risdate><volume>14</volume><issue>5</issue><spage>1166</spage><epage>1172</epage><pages>1166-1172</pages><issn>1089-7771</issn><issn>2168-2194</issn><eissn>1558-0032</eissn><eissn>2168-2208</eissn><coden>ITIBFX</coden><abstract>Physical-activity recognition via wearable sensors can provide valuable information regarding an individual's degree of functional ability and lifestyle. In this paper, we present an accelerometer sensor-based approach for human-activity recognition. Our proposed recognition method uses a hierarchical scheme. At the lower level, the state to which an activity belongs, i.e., static, transition, or dynamic, is recognized by means of statistical signal features and artificial-neural nets (ANNs). The upper level recognition uses the autoregressive (AR) modeling of the acceleration signals, thus, incorporating the derived AR-coefficients along with the signal-magnitude area and tilt angle to form an augmented-feature vector. The resulting feature vector is further processed by the linear-discriminant analysis and ANNs to recognize a particular human activity. Our proposed activity-recognition method recognizes three states and 15 activities with an average accuracy of 97.9% using only a single triaxial accelerometer attached to the subject's chest.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>20529753</pmid><doi>10.1109/TITB.2010.2051955</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1089-7771 |
ispartof | IEEE journal of biomedical and health informatics, 2010-09, Vol.14 (5), p.1166-1172 |
issn | 1089-7771 2168-2194 1558-0032 2168-2208 |
language | eng |
recordid | cdi_ieee_primary_5482135 |
source | IEEE Electronic Library (IEL) |
subjects | Acceleration Accelerometer Accelerometers Adult Artificial neural networks artificial-neural nets (ANNs) autoregressive (AR) modeling Computer vision Discriminant Analysis Female human-activity recognition Humans IEEE activities Legged locomotion Linear discriminant analysis Male Monitoring, Ambulatory - methods Motor Activity Neural Networks (Computer) Normal Distribution Regression Analysis Signal Processing, Computer-Assisted Vectors Wearable sensors |
title | A Triaxial Accelerometer-Based Physical-Activity Recognition via Augmented-Signal Features and a Hierarchical Recognizer |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T03%3A25%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Triaxial%20Accelerometer-Based%20Physical-Activity%20Recognition%20via%20Augmented-Signal%20Features%20and%20a%20Hierarchical%20Recognizer&rft.jtitle=IEEE%20journal%20of%20biomedical%20and%20health%20informatics&rft.au=Khan,%20A%20M&rft.date=2010-09&rft.volume=14&rft.issue=5&rft.spage=1166&rft.epage=1172&rft.pages=1166-1172&rft.issn=1089-7771&rft.eissn=1558-0032&rft.coden=ITIBFX&rft_id=info:doi/10.1109/TITB.2010.2051955&rft_dat=%3Cproquest_RIE%3E2722307861%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1029860903&rft_id=info:pmid/20529753&rft_ieee_id=5482135&rfr_iscdi=true |