Hydrological data management with grid utility

In distributed heterogeneous scenarios, querying data from various sources efficiently and concisely is always a key challenge. In this paper, we analyze the characteristics of hydrological data and study the data integration in grid environment. We propose a query processing procedure based on doma...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Nianfeng Weng, Xingchun Diao, Jing Feng, Zhanfeng Wang, Deqing Chen
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 273
container_issue
container_start_page 270
container_title
container_volume
creator Nianfeng Weng
Xingchun Diao
Jing Feng
Zhanfeng Wang
Deqing Chen
description In distributed heterogeneous scenarios, querying data from various sources efficiently and concisely is always a key challenge. In this paper, we analyze the characteristics of hydrological data and study the data integration in grid environment. We propose a query processing procedure based on domain topics and grid infrastructure. Domain topics are defined according to domain query patterns, and data sources are described for each domain topic. In the following schema mapping procedure, we only focus on a small subset of schémas. A topic query is decomposed into sub-queries against global schema and then mapped to local queries against local schémas in the query processing procedure. Performance metrics are retrieved from grid infrastructure to generate an optimum query plan. And query answers are cached and described as new sources for new queries. Empirical results have shown that our approach works well in the hydrological science grid environment.
doi_str_mv 10.1109/ICIME.2010.5478183
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5478183</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5478183</ieee_id><sourcerecordid>5478183</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-84c9f8a8284c2f8db66eff911c9a35d4de9e2728b891a18ac9318673a406b4d73</originalsourceid><addsrcrecordid>eNpVj09Lw0AUxFekoNZ8Ab3kC6Tu2__vKKHaQMVL7-Ulu4krSSvJiuTbG7AX5zLzY2BgGHsAvgHg-FSV1dt2I_jCWlkHTl6xDJeghFJaGA3X_1jaFbsTnCNKrYHfsGyaPvmipbTc3LLNbvbjuT93saE-95QoH-hEXRjCKeU_MX3k3Rh9_p1iH9N8z1Yt9VPILr5mh5ftodwV-_fXqnzeFxF5KpxqsHXkxBJE63xtTGhbBGiQpPbKBwzCClc7BAJHDUpwxkpS3NTKW7lmj3-zMYRw_BrjQON8vDyWv9N6Rpo</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Hydrological data management with grid utility</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Nianfeng Weng ; Xingchun Diao ; Jing Feng ; Zhanfeng Wang ; Deqing Chen</creator><creatorcontrib>Nianfeng Weng ; Xingchun Diao ; Jing Feng ; Zhanfeng Wang ; Deqing Chen</creatorcontrib><description>In distributed heterogeneous scenarios, querying data from various sources efficiently and concisely is always a key challenge. In this paper, we analyze the characteristics of hydrological data and study the data integration in grid environment. We propose a query processing procedure based on domain topics and grid infrastructure. Domain topics are defined according to domain query patterns, and data sources are described for each domain topic. In the following schema mapping procedure, we only focus on a small subset of schémas. A topic query is decomposed into sub-queries against global schema and then mapped to local queries against local schémas in the query processing procedure. Performance metrics are retrieved from grid infrastructure to generate an optimum query plan. And query answers are cached and described as new sources for new queries. Empirical results have shown that our approach works well in the hydrological science grid environment.</description><identifier>ISBN: 9781424452637</identifier><identifier>ISBN: 1424452635</identifier><identifier>EISBN: 9781424452651</identifier><identifier>EISBN: 1424452651</identifier><identifier>DOI: 10.1109/ICIME.2010.5478183</identifier><identifier>LCCN: 2009935510</identifier><language>eng</language><publisher>IEEE</publisher><subject>Automation ; data integration ; hydrological science grid ; Information retrieval ; Measurement ; Merging ; Meteorology ; Programmable logic arrays ; query optimization ; Query processing ; Resource management ; Water resources ; XML</subject><ispartof>2010 2nd IEEE International Conference on Information Management and Engineering, 2010, p.270-273</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5478183$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>310,311,781,785,790,791,2059,27927,54922</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5478183$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Nianfeng Weng</creatorcontrib><creatorcontrib>Xingchun Diao</creatorcontrib><creatorcontrib>Jing Feng</creatorcontrib><creatorcontrib>Zhanfeng Wang</creatorcontrib><creatorcontrib>Deqing Chen</creatorcontrib><title>Hydrological data management with grid utility</title><title>2010 2nd IEEE International Conference on Information Management and Engineering</title><addtitle>ICIME</addtitle><description>In distributed heterogeneous scenarios, querying data from various sources efficiently and concisely is always a key challenge. In this paper, we analyze the characteristics of hydrological data and study the data integration in grid environment. We propose a query processing procedure based on domain topics and grid infrastructure. Domain topics are defined according to domain query patterns, and data sources are described for each domain topic. In the following schema mapping procedure, we only focus on a small subset of schémas. A topic query is decomposed into sub-queries against global schema and then mapped to local queries against local schémas in the query processing procedure. Performance metrics are retrieved from grid infrastructure to generate an optimum query plan. And query answers are cached and described as new sources for new queries. Empirical results have shown that our approach works well in the hydrological science grid environment.</description><subject>Automation</subject><subject>data integration</subject><subject>hydrological science grid</subject><subject>Information retrieval</subject><subject>Measurement</subject><subject>Merging</subject><subject>Meteorology</subject><subject>Programmable logic arrays</subject><subject>query optimization</subject><subject>Query processing</subject><subject>Resource management</subject><subject>Water resources</subject><subject>XML</subject><isbn>9781424452637</isbn><isbn>1424452635</isbn><isbn>9781424452651</isbn><isbn>1424452651</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVj09Lw0AUxFekoNZ8Ab3kC6Tu2__vKKHaQMVL7-Ulu4krSSvJiuTbG7AX5zLzY2BgGHsAvgHg-FSV1dt2I_jCWlkHTl6xDJeghFJaGA3X_1jaFbsTnCNKrYHfsGyaPvmipbTc3LLNbvbjuT93saE-95QoH-hEXRjCKeU_MX3k3Rh9_p1iH9N8z1Yt9VPILr5mh5ftodwV-_fXqnzeFxF5KpxqsHXkxBJE63xtTGhbBGiQpPbKBwzCClc7BAJHDUpwxkpS3NTKW7lmj3-zMYRw_BrjQON8vDyWv9N6Rpo</recordid><startdate>201004</startdate><enddate>201004</enddate><creator>Nianfeng Weng</creator><creator>Xingchun Diao</creator><creator>Jing Feng</creator><creator>Zhanfeng Wang</creator><creator>Deqing Chen</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201004</creationdate><title>Hydrological data management with grid utility</title><author>Nianfeng Weng ; Xingchun Diao ; Jing Feng ; Zhanfeng Wang ; Deqing Chen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-84c9f8a8284c2f8db66eff911c9a35d4de9e2728b891a18ac9318673a406b4d73</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Automation</topic><topic>data integration</topic><topic>hydrological science grid</topic><topic>Information retrieval</topic><topic>Measurement</topic><topic>Merging</topic><topic>Meteorology</topic><topic>Programmable logic arrays</topic><topic>query optimization</topic><topic>Query processing</topic><topic>Resource management</topic><topic>Water resources</topic><topic>XML</topic><toplevel>online_resources</toplevel><creatorcontrib>Nianfeng Weng</creatorcontrib><creatorcontrib>Xingchun Diao</creatorcontrib><creatorcontrib>Jing Feng</creatorcontrib><creatorcontrib>Zhanfeng Wang</creatorcontrib><creatorcontrib>Deqing Chen</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Nianfeng Weng</au><au>Xingchun Diao</au><au>Jing Feng</au><au>Zhanfeng Wang</au><au>Deqing Chen</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Hydrological data management with grid utility</atitle><btitle>2010 2nd IEEE International Conference on Information Management and Engineering</btitle><stitle>ICIME</stitle><date>2010-04</date><risdate>2010</risdate><spage>270</spage><epage>273</epage><pages>270-273</pages><isbn>9781424452637</isbn><isbn>1424452635</isbn><eisbn>9781424452651</eisbn><eisbn>1424452651</eisbn><abstract>In distributed heterogeneous scenarios, querying data from various sources efficiently and concisely is always a key challenge. In this paper, we analyze the characteristics of hydrological data and study the data integration in grid environment. We propose a query processing procedure based on domain topics and grid infrastructure. Domain topics are defined according to domain query patterns, and data sources are described for each domain topic. In the following schema mapping procedure, we only focus on a small subset of schémas. A topic query is decomposed into sub-queries against global schema and then mapped to local queries against local schémas in the query processing procedure. Performance metrics are retrieved from grid infrastructure to generate an optimum query plan. And query answers are cached and described as new sources for new queries. Empirical results have shown that our approach works well in the hydrological science grid environment.</abstract><pub>IEEE</pub><doi>10.1109/ICIME.2010.5478183</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9781424452637
ispartof 2010 2nd IEEE International Conference on Information Management and Engineering, 2010, p.270-273
issn
language eng
recordid cdi_ieee_primary_5478183
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Automation
data integration
hydrological science grid
Information retrieval
Measurement
Merging
Meteorology
Programmable logic arrays
query optimization
Query processing
Resource management
Water resources
XML
title Hydrological data management with grid utility
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T06%3A26%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Hydrological%20data%20management%20with%20grid%20utility&rft.btitle=2010%202nd%20IEEE%20International%20Conference%20on%20Information%20Management%20and%20Engineering&rft.au=Nianfeng%20Weng&rft.date=2010-04&rft.spage=270&rft.epage=273&rft.pages=270-273&rft.isbn=9781424452637&rft.isbn_list=1424452635&rft_id=info:doi/10.1109/ICIME.2010.5478183&rft_dat=%3Cieee_6IE%3E5478183%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424452651&rft.eisbn_list=1424452651&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5478183&rfr_iscdi=true