Hydrological data management with grid utility
In distributed heterogeneous scenarios, querying data from various sources efficiently and concisely is always a key challenge. In this paper, we analyze the characteristics of hydrological data and study the data integration in grid environment. We propose a query processing procedure based on doma...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 273 |
---|---|
container_issue | |
container_start_page | 270 |
container_title | |
container_volume | |
creator | Nianfeng Weng Xingchun Diao Jing Feng Zhanfeng Wang Deqing Chen |
description | In distributed heterogeneous scenarios, querying data from various sources efficiently and concisely is always a key challenge. In this paper, we analyze the characteristics of hydrological data and study the data integration in grid environment. We propose a query processing procedure based on domain topics and grid infrastructure. Domain topics are defined according to domain query patterns, and data sources are described for each domain topic. In the following schema mapping procedure, we only focus on a small subset of schémas. A topic query is decomposed into sub-queries against global schema and then mapped to local queries against local schémas in the query processing procedure. Performance metrics are retrieved from grid infrastructure to generate an optimum query plan. And query answers are cached and described as new sources for new queries. Empirical results have shown that our approach works well in the hydrological science grid environment. |
doi_str_mv | 10.1109/ICIME.2010.5478183 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5478183</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5478183</ieee_id><sourcerecordid>5478183</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-84c9f8a8284c2f8db66eff911c9a35d4de9e2728b891a18ac9318673a406b4d73</originalsourceid><addsrcrecordid>eNpVj09Lw0AUxFekoNZ8Ab3kC6Tu2__vKKHaQMVL7-Ulu4krSSvJiuTbG7AX5zLzY2BgGHsAvgHg-FSV1dt2I_jCWlkHTl6xDJeghFJaGA3X_1jaFbsTnCNKrYHfsGyaPvmipbTc3LLNbvbjuT93saE-95QoH-hEXRjCKeU_MX3k3Rh9_p1iH9N8z1Yt9VPILr5mh5ftodwV-_fXqnzeFxF5KpxqsHXkxBJE63xtTGhbBGiQpPbKBwzCClc7BAJHDUpwxkpS3NTKW7lmj3-zMYRw_BrjQON8vDyWv9N6Rpo</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Hydrological data management with grid utility</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Nianfeng Weng ; Xingchun Diao ; Jing Feng ; Zhanfeng Wang ; Deqing Chen</creator><creatorcontrib>Nianfeng Weng ; Xingchun Diao ; Jing Feng ; Zhanfeng Wang ; Deqing Chen</creatorcontrib><description>In distributed heterogeneous scenarios, querying data from various sources efficiently and concisely is always a key challenge. In this paper, we analyze the characteristics of hydrological data and study the data integration in grid environment. We propose a query processing procedure based on domain topics and grid infrastructure. Domain topics are defined according to domain query patterns, and data sources are described for each domain topic. In the following schema mapping procedure, we only focus on a small subset of schémas. A topic query is decomposed into sub-queries against global schema and then mapped to local queries against local schémas in the query processing procedure. Performance metrics are retrieved from grid infrastructure to generate an optimum query plan. And query answers are cached and described as new sources for new queries. Empirical results have shown that our approach works well in the hydrological science grid environment.</description><identifier>ISBN: 9781424452637</identifier><identifier>ISBN: 1424452635</identifier><identifier>EISBN: 9781424452651</identifier><identifier>EISBN: 1424452651</identifier><identifier>DOI: 10.1109/ICIME.2010.5478183</identifier><identifier>LCCN: 2009935510</identifier><language>eng</language><publisher>IEEE</publisher><subject>Automation ; data integration ; hydrological science grid ; Information retrieval ; Measurement ; Merging ; Meteorology ; Programmable logic arrays ; query optimization ; Query processing ; Resource management ; Water resources ; XML</subject><ispartof>2010 2nd IEEE International Conference on Information Management and Engineering, 2010, p.270-273</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5478183$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>310,311,781,785,790,791,2059,27927,54922</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5478183$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Nianfeng Weng</creatorcontrib><creatorcontrib>Xingchun Diao</creatorcontrib><creatorcontrib>Jing Feng</creatorcontrib><creatorcontrib>Zhanfeng Wang</creatorcontrib><creatorcontrib>Deqing Chen</creatorcontrib><title>Hydrological data management with grid utility</title><title>2010 2nd IEEE International Conference on Information Management and Engineering</title><addtitle>ICIME</addtitle><description>In distributed heterogeneous scenarios, querying data from various sources efficiently and concisely is always a key challenge. In this paper, we analyze the characteristics of hydrological data and study the data integration in grid environment. We propose a query processing procedure based on domain topics and grid infrastructure. Domain topics are defined according to domain query patterns, and data sources are described for each domain topic. In the following schema mapping procedure, we only focus on a small subset of schémas. A topic query is decomposed into sub-queries against global schema and then mapped to local queries against local schémas in the query processing procedure. Performance metrics are retrieved from grid infrastructure to generate an optimum query plan. And query answers are cached and described as new sources for new queries. Empirical results have shown that our approach works well in the hydrological science grid environment.</description><subject>Automation</subject><subject>data integration</subject><subject>hydrological science grid</subject><subject>Information retrieval</subject><subject>Measurement</subject><subject>Merging</subject><subject>Meteorology</subject><subject>Programmable logic arrays</subject><subject>query optimization</subject><subject>Query processing</subject><subject>Resource management</subject><subject>Water resources</subject><subject>XML</subject><isbn>9781424452637</isbn><isbn>1424452635</isbn><isbn>9781424452651</isbn><isbn>1424452651</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVj09Lw0AUxFekoNZ8Ab3kC6Tu2__vKKHaQMVL7-Ulu4krSSvJiuTbG7AX5zLzY2BgGHsAvgHg-FSV1dt2I_jCWlkHTl6xDJeghFJaGA3X_1jaFbsTnCNKrYHfsGyaPvmipbTc3LLNbvbjuT93saE-95QoH-hEXRjCKeU_MX3k3Rh9_p1iH9N8z1Yt9VPILr5mh5ftodwV-_fXqnzeFxF5KpxqsHXkxBJE63xtTGhbBGiQpPbKBwzCClc7BAJHDUpwxkpS3NTKW7lmj3-zMYRw_BrjQON8vDyWv9N6Rpo</recordid><startdate>201004</startdate><enddate>201004</enddate><creator>Nianfeng Weng</creator><creator>Xingchun Diao</creator><creator>Jing Feng</creator><creator>Zhanfeng Wang</creator><creator>Deqing Chen</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201004</creationdate><title>Hydrological data management with grid utility</title><author>Nianfeng Weng ; Xingchun Diao ; Jing Feng ; Zhanfeng Wang ; Deqing Chen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-84c9f8a8284c2f8db66eff911c9a35d4de9e2728b891a18ac9318673a406b4d73</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Automation</topic><topic>data integration</topic><topic>hydrological science grid</topic><topic>Information retrieval</topic><topic>Measurement</topic><topic>Merging</topic><topic>Meteorology</topic><topic>Programmable logic arrays</topic><topic>query optimization</topic><topic>Query processing</topic><topic>Resource management</topic><topic>Water resources</topic><topic>XML</topic><toplevel>online_resources</toplevel><creatorcontrib>Nianfeng Weng</creatorcontrib><creatorcontrib>Xingchun Diao</creatorcontrib><creatorcontrib>Jing Feng</creatorcontrib><creatorcontrib>Zhanfeng Wang</creatorcontrib><creatorcontrib>Deqing Chen</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Nianfeng Weng</au><au>Xingchun Diao</au><au>Jing Feng</au><au>Zhanfeng Wang</au><au>Deqing Chen</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Hydrological data management with grid utility</atitle><btitle>2010 2nd IEEE International Conference on Information Management and Engineering</btitle><stitle>ICIME</stitle><date>2010-04</date><risdate>2010</risdate><spage>270</spage><epage>273</epage><pages>270-273</pages><isbn>9781424452637</isbn><isbn>1424452635</isbn><eisbn>9781424452651</eisbn><eisbn>1424452651</eisbn><abstract>In distributed heterogeneous scenarios, querying data from various sources efficiently and concisely is always a key challenge. In this paper, we analyze the characteristics of hydrological data and study the data integration in grid environment. We propose a query processing procedure based on domain topics and grid infrastructure. Domain topics are defined according to domain query patterns, and data sources are described for each domain topic. In the following schema mapping procedure, we only focus on a small subset of schémas. A topic query is decomposed into sub-queries against global schema and then mapped to local queries against local schémas in the query processing procedure. Performance metrics are retrieved from grid infrastructure to generate an optimum query plan. And query answers are cached and described as new sources for new queries. Empirical results have shown that our approach works well in the hydrological science grid environment.</abstract><pub>IEEE</pub><doi>10.1109/ICIME.2010.5478183</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 9781424452637 |
ispartof | 2010 2nd IEEE International Conference on Information Management and Engineering, 2010, p.270-273 |
issn | |
language | eng |
recordid | cdi_ieee_primary_5478183 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Automation data integration hydrological science grid Information retrieval Measurement Merging Meteorology Programmable logic arrays query optimization Query processing Resource management Water resources XML |
title | Hydrological data management with grid utility |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T06%3A26%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Hydrological%20data%20management%20with%20grid%20utility&rft.btitle=2010%202nd%20IEEE%20International%20Conference%20on%20Information%20Management%20and%20Engineering&rft.au=Nianfeng%20Weng&rft.date=2010-04&rft.spage=270&rft.epage=273&rft.pages=270-273&rft.isbn=9781424452637&rft.isbn_list=1424452635&rft_id=info:doi/10.1109/ICIME.2010.5478183&rft_dat=%3Cieee_6IE%3E5478183%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424452651&rft.eisbn_list=1424452651&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5478183&rfr_iscdi=true |