Model building methodologies utilizing Artificial Neural Network (ANN) for performance of project planning, implementation and controlling processes

Model building methodologies are playing an increasingly significant role in many aspects of software engineering activities. Today models are being applied right from requirement conceptualization to the final software installation and maintenance. Traditional methodologies however, fail to cope wi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Gandapur, Muhammad, Mahmood, Ahmed, Sulaiman, Suziah B
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 443
container_issue
container_start_page 439
container_title
container_volume
creator Gandapur, Muhammad
Mahmood, Ahmed
Sulaiman, Suziah B
description Model building methodologies are playing an increasingly significant role in many aspects of software engineering activities. Today models are being applied right from requirement conceptualization to the final software installation and maintenance. Traditional methodologies however, fail to cope with increasing complexity and rapidly evolving nature of the software. The need for an efficient model building methodology is quite manifest today. The main objective of this study is to propose and implement a novel Model Building Methodology utilizing Artificial Neural Network (ANN). In order to achieve this objective, information related to regression analysis was reviewed.
doi_str_mv 10.1109/ICIME.2010.5477865
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5477865</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5477865</ieee_id><sourcerecordid>5477865</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-8afd8b60dfa74d9aaed90c315cc927499ef844b844f21a07eee3e74b9e8b87e03</originalsourceid><addsrcrecordid>eNpVkMFKAzEQhiNSUGtfQC85Ktia7GY3m2MpVQttvfResslsTc0mSzZF9Dl8YFPtxYHh45-f-QcGoRtKJpQS8biYLVbzSUaSLhjnVVmcoZHgFWUZY0VWFvT8n875AF1lhAiRFwUlF2jU93uSKpmclJfoe-U1WFwfjNXG7XAL8c1rb_3OQI8P0VjzdZxPQzSNUUZavIZD-EX88OEd303X63vc-IA7CAmtdAqwb3AX_B5UxJ2VzqWMB2zazkILLspovMPSaay8i8Fbe7yRFhT0PfTXaNBI28PoxCHaPM03s5fx8vV5MZsux0aQOK5ko6u6JLqRnGkhJWhBVE4LpUTGmRDQVIzVqZuMSsIBIAfOagFVXXEg-RDd_sWaZG27YFoZPrenv-Y_gZ1uEw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Model building methodologies utilizing Artificial Neural Network (ANN) for performance of project planning, implementation and controlling processes</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Gandapur, Muhammad ; Mahmood, Ahmed ; Sulaiman, Suziah B</creator><creatorcontrib>Gandapur, Muhammad ; Mahmood, Ahmed ; Sulaiman, Suziah B</creatorcontrib><description>Model building methodologies are playing an increasingly significant role in many aspects of software engineering activities. Today models are being applied right from requirement conceptualization to the final software installation and maintenance. Traditional methodologies however, fail to cope with increasing complexity and rapidly evolving nature of the software. The need for an efficient model building methodology is quite manifest today. The main objective of this study is to propose and implement a novel Model Building Methodology utilizing Artificial Neural Network (ANN). In order to achieve this objective, information related to regression analysis was reviewed.</description><identifier>ISBN: 9781424452637</identifier><identifier>ISBN: 1424452635</identifier><identifier>EISBN: 9781424452651</identifier><identifier>EISBN: 1424452651</identifier><identifier>DOI: 10.1109/ICIME.2010.5477865</identifier><identifier>LCCN: 2009935510</identifier><language>eng</language><publisher>IEEE</publisher><subject>Artificial Neural Network (ANN) ; Artificial neural networks ; Inventory management ; Investments ; Multiple Regression Method ; Predictive models ; Process control ; Process planning ; Productivity ; Profitability ; Prognostic Model ; Project management ; Resource management</subject><ispartof>2010 2nd IEEE International Conference on Information Management and Engineering, 2010, p.439-443</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5477865$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5477865$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Gandapur, Muhammad</creatorcontrib><creatorcontrib>Mahmood, Ahmed</creatorcontrib><creatorcontrib>Sulaiman, Suziah B</creatorcontrib><title>Model building methodologies utilizing Artificial Neural Network (ANN) for performance of project planning, implementation and controlling processes</title><title>2010 2nd IEEE International Conference on Information Management and Engineering</title><addtitle>ICIME</addtitle><description>Model building methodologies are playing an increasingly significant role in many aspects of software engineering activities. Today models are being applied right from requirement conceptualization to the final software installation and maintenance. Traditional methodologies however, fail to cope with increasing complexity and rapidly evolving nature of the software. The need for an efficient model building methodology is quite manifest today. The main objective of this study is to propose and implement a novel Model Building Methodology utilizing Artificial Neural Network (ANN). In order to achieve this objective, information related to regression analysis was reviewed.</description><subject>Artificial Neural Network (ANN)</subject><subject>Artificial neural networks</subject><subject>Inventory management</subject><subject>Investments</subject><subject>Multiple Regression Method</subject><subject>Predictive models</subject><subject>Process control</subject><subject>Process planning</subject><subject>Productivity</subject><subject>Profitability</subject><subject>Prognostic Model</subject><subject>Project management</subject><subject>Resource management</subject><isbn>9781424452637</isbn><isbn>1424452635</isbn><isbn>9781424452651</isbn><isbn>1424452651</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVkMFKAzEQhiNSUGtfQC85Ktia7GY3m2MpVQttvfResslsTc0mSzZF9Dl8YFPtxYHh45-f-QcGoRtKJpQS8biYLVbzSUaSLhjnVVmcoZHgFWUZY0VWFvT8n875AF1lhAiRFwUlF2jU93uSKpmclJfoe-U1WFwfjNXG7XAL8c1rb_3OQI8P0VjzdZxPQzSNUUZavIZD-EX88OEd303X63vc-IA7CAmtdAqwb3AX_B5UxJ2VzqWMB2zazkILLspovMPSaay8i8Fbe7yRFhT0PfTXaNBI28PoxCHaPM03s5fx8vV5MZsux0aQOK5ko6u6JLqRnGkhJWhBVE4LpUTGmRDQVIzVqZuMSsIBIAfOagFVXXEg-RDd_sWaZG27YFoZPrenv-Y_gZ1uEw</recordid><startdate>201004</startdate><enddate>201004</enddate><creator>Gandapur, Muhammad</creator><creator>Mahmood, Ahmed</creator><creator>Sulaiman, Suziah B</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201004</creationdate><title>Model building methodologies utilizing Artificial Neural Network (ANN) for performance of project planning, implementation and controlling processes</title><author>Gandapur, Muhammad ; Mahmood, Ahmed ; Sulaiman, Suziah B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-8afd8b60dfa74d9aaed90c315cc927499ef844b844f21a07eee3e74b9e8b87e03</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Artificial Neural Network (ANN)</topic><topic>Artificial neural networks</topic><topic>Inventory management</topic><topic>Investments</topic><topic>Multiple Regression Method</topic><topic>Predictive models</topic><topic>Process control</topic><topic>Process planning</topic><topic>Productivity</topic><topic>Profitability</topic><topic>Prognostic Model</topic><topic>Project management</topic><topic>Resource management</topic><toplevel>online_resources</toplevel><creatorcontrib>Gandapur, Muhammad</creatorcontrib><creatorcontrib>Mahmood, Ahmed</creatorcontrib><creatorcontrib>Sulaiman, Suziah B</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Gandapur, Muhammad</au><au>Mahmood, Ahmed</au><au>Sulaiman, Suziah B</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Model building methodologies utilizing Artificial Neural Network (ANN) for performance of project planning, implementation and controlling processes</atitle><btitle>2010 2nd IEEE International Conference on Information Management and Engineering</btitle><stitle>ICIME</stitle><date>2010-04</date><risdate>2010</risdate><spage>439</spage><epage>443</epage><pages>439-443</pages><isbn>9781424452637</isbn><isbn>1424452635</isbn><eisbn>9781424452651</eisbn><eisbn>1424452651</eisbn><abstract>Model building methodologies are playing an increasingly significant role in many aspects of software engineering activities. Today models are being applied right from requirement conceptualization to the final software installation and maintenance. Traditional methodologies however, fail to cope with increasing complexity and rapidly evolving nature of the software. The need for an efficient model building methodology is quite manifest today. The main objective of this study is to propose and implement a novel Model Building Methodology utilizing Artificial Neural Network (ANN). In order to achieve this objective, information related to regression analysis was reviewed.</abstract><pub>IEEE</pub><doi>10.1109/ICIME.2010.5477865</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9781424452637
ispartof 2010 2nd IEEE International Conference on Information Management and Engineering, 2010, p.439-443
issn
language eng
recordid cdi_ieee_primary_5477865
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Artificial Neural Network (ANN)
Artificial neural networks
Inventory management
Investments
Multiple Regression Method
Predictive models
Process control
Process planning
Productivity
Profitability
Prognostic Model
Project management
Resource management
title Model building methodologies utilizing Artificial Neural Network (ANN) for performance of project planning, implementation and controlling processes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T07%3A13%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Model%20building%20methodologies%20utilizing%20Artificial%20Neural%20Network%20(ANN)%20for%20performance%20of%20project%20planning,%20implementation%20and%20controlling%20processes&rft.btitle=2010%202nd%20IEEE%20International%20Conference%20on%20Information%20Management%20and%20Engineering&rft.au=Gandapur,%20Muhammad&rft.date=2010-04&rft.spage=439&rft.epage=443&rft.pages=439-443&rft.isbn=9781424452637&rft.isbn_list=1424452635&rft_id=info:doi/10.1109/ICIME.2010.5477865&rft_dat=%3Cieee_6IE%3E5477865%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424452651&rft.eisbn_list=1424452651&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5477865&rfr_iscdi=true