Model building methodologies utilizing Artificial Neural Network (ANN) for performance of project planning, implementation and controlling processes
Model building methodologies are playing an increasingly significant role in many aspects of software engineering activities. Today models are being applied right from requirement conceptualization to the final software installation and maintenance. Traditional methodologies however, fail to cope wi...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 443 |
---|---|
container_issue | |
container_start_page | 439 |
container_title | |
container_volume | |
creator | Gandapur, Muhammad Mahmood, Ahmed Sulaiman, Suziah B |
description | Model building methodologies are playing an increasingly significant role in many aspects of software engineering activities. Today models are being applied right from requirement conceptualization to the final software installation and maintenance. Traditional methodologies however, fail to cope with increasing complexity and rapidly evolving nature of the software. The need for an efficient model building methodology is quite manifest today. The main objective of this study is to propose and implement a novel Model Building Methodology utilizing Artificial Neural Network (ANN). In order to achieve this objective, information related to regression analysis was reviewed. |
doi_str_mv | 10.1109/ICIME.2010.5477865 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5477865</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5477865</ieee_id><sourcerecordid>5477865</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-8afd8b60dfa74d9aaed90c315cc927499ef844b844f21a07eee3e74b9e8b87e03</originalsourceid><addsrcrecordid>eNpVkMFKAzEQhiNSUGtfQC85Ktia7GY3m2MpVQttvfResslsTc0mSzZF9Dl8YFPtxYHh45-f-QcGoRtKJpQS8biYLVbzSUaSLhjnVVmcoZHgFWUZY0VWFvT8n875AF1lhAiRFwUlF2jU93uSKpmclJfoe-U1WFwfjNXG7XAL8c1rb_3OQI8P0VjzdZxPQzSNUUZavIZD-EX88OEd303X63vc-IA7CAmtdAqwb3AX_B5UxJ2VzqWMB2zazkILLspovMPSaay8i8Fbe7yRFhT0PfTXaNBI28PoxCHaPM03s5fx8vV5MZsux0aQOK5ko6u6JLqRnGkhJWhBVE4LpUTGmRDQVIzVqZuMSsIBIAfOagFVXXEg-RDd_sWaZG27YFoZPrenv-Y_gZ1uEw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Model building methodologies utilizing Artificial Neural Network (ANN) for performance of project planning, implementation and controlling processes</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Gandapur, Muhammad ; Mahmood, Ahmed ; Sulaiman, Suziah B</creator><creatorcontrib>Gandapur, Muhammad ; Mahmood, Ahmed ; Sulaiman, Suziah B</creatorcontrib><description>Model building methodologies are playing an increasingly significant role in many aspects of software engineering activities. Today models are being applied right from requirement conceptualization to the final software installation and maintenance. Traditional methodologies however, fail to cope with increasing complexity and rapidly evolving nature of the software. The need for an efficient model building methodology is quite manifest today. The main objective of this study is to propose and implement a novel Model Building Methodology utilizing Artificial Neural Network (ANN). In order to achieve this objective, information related to regression analysis was reviewed.</description><identifier>ISBN: 9781424452637</identifier><identifier>ISBN: 1424452635</identifier><identifier>EISBN: 9781424452651</identifier><identifier>EISBN: 1424452651</identifier><identifier>DOI: 10.1109/ICIME.2010.5477865</identifier><identifier>LCCN: 2009935510</identifier><language>eng</language><publisher>IEEE</publisher><subject>Artificial Neural Network (ANN) ; Artificial neural networks ; Inventory management ; Investments ; Multiple Regression Method ; Predictive models ; Process control ; Process planning ; Productivity ; Profitability ; Prognostic Model ; Project management ; Resource management</subject><ispartof>2010 2nd IEEE International Conference on Information Management and Engineering, 2010, p.439-443</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5477865$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5477865$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Gandapur, Muhammad</creatorcontrib><creatorcontrib>Mahmood, Ahmed</creatorcontrib><creatorcontrib>Sulaiman, Suziah B</creatorcontrib><title>Model building methodologies utilizing Artificial Neural Network (ANN) for performance of project planning, implementation and controlling processes</title><title>2010 2nd IEEE International Conference on Information Management and Engineering</title><addtitle>ICIME</addtitle><description>Model building methodologies are playing an increasingly significant role in many aspects of software engineering activities. Today models are being applied right from requirement conceptualization to the final software installation and maintenance. Traditional methodologies however, fail to cope with increasing complexity and rapidly evolving nature of the software. The need for an efficient model building methodology is quite manifest today. The main objective of this study is to propose and implement a novel Model Building Methodology utilizing Artificial Neural Network (ANN). In order to achieve this objective, information related to regression analysis was reviewed.</description><subject>Artificial Neural Network (ANN)</subject><subject>Artificial neural networks</subject><subject>Inventory management</subject><subject>Investments</subject><subject>Multiple Regression Method</subject><subject>Predictive models</subject><subject>Process control</subject><subject>Process planning</subject><subject>Productivity</subject><subject>Profitability</subject><subject>Prognostic Model</subject><subject>Project management</subject><subject>Resource management</subject><isbn>9781424452637</isbn><isbn>1424452635</isbn><isbn>9781424452651</isbn><isbn>1424452651</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVkMFKAzEQhiNSUGtfQC85Ktia7GY3m2MpVQttvfResslsTc0mSzZF9Dl8YFPtxYHh45-f-QcGoRtKJpQS8biYLVbzSUaSLhjnVVmcoZHgFWUZY0VWFvT8n875AF1lhAiRFwUlF2jU93uSKpmclJfoe-U1WFwfjNXG7XAL8c1rb_3OQI8P0VjzdZxPQzSNUUZavIZD-EX88OEd303X63vc-IA7CAmtdAqwb3AX_B5UxJ2VzqWMB2zazkILLspovMPSaay8i8Fbe7yRFhT0PfTXaNBI28PoxCHaPM03s5fx8vV5MZsux0aQOK5ko6u6JLqRnGkhJWhBVE4LpUTGmRDQVIzVqZuMSsIBIAfOagFVXXEg-RDd_sWaZG27YFoZPrenv-Y_gZ1uEw</recordid><startdate>201004</startdate><enddate>201004</enddate><creator>Gandapur, Muhammad</creator><creator>Mahmood, Ahmed</creator><creator>Sulaiman, Suziah B</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201004</creationdate><title>Model building methodologies utilizing Artificial Neural Network (ANN) for performance of project planning, implementation and controlling processes</title><author>Gandapur, Muhammad ; Mahmood, Ahmed ; Sulaiman, Suziah B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-8afd8b60dfa74d9aaed90c315cc927499ef844b844f21a07eee3e74b9e8b87e03</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Artificial Neural Network (ANN)</topic><topic>Artificial neural networks</topic><topic>Inventory management</topic><topic>Investments</topic><topic>Multiple Regression Method</topic><topic>Predictive models</topic><topic>Process control</topic><topic>Process planning</topic><topic>Productivity</topic><topic>Profitability</topic><topic>Prognostic Model</topic><topic>Project management</topic><topic>Resource management</topic><toplevel>online_resources</toplevel><creatorcontrib>Gandapur, Muhammad</creatorcontrib><creatorcontrib>Mahmood, Ahmed</creatorcontrib><creatorcontrib>Sulaiman, Suziah B</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Gandapur, Muhammad</au><au>Mahmood, Ahmed</au><au>Sulaiman, Suziah B</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Model building methodologies utilizing Artificial Neural Network (ANN) for performance of project planning, implementation and controlling processes</atitle><btitle>2010 2nd IEEE International Conference on Information Management and Engineering</btitle><stitle>ICIME</stitle><date>2010-04</date><risdate>2010</risdate><spage>439</spage><epage>443</epage><pages>439-443</pages><isbn>9781424452637</isbn><isbn>1424452635</isbn><eisbn>9781424452651</eisbn><eisbn>1424452651</eisbn><abstract>Model building methodologies are playing an increasingly significant role in many aspects of software engineering activities. Today models are being applied right from requirement conceptualization to the final software installation and maintenance. Traditional methodologies however, fail to cope with increasing complexity and rapidly evolving nature of the software. The need for an efficient model building methodology is quite manifest today. The main objective of this study is to propose and implement a novel Model Building Methodology utilizing Artificial Neural Network (ANN). In order to achieve this objective, information related to regression analysis was reviewed.</abstract><pub>IEEE</pub><doi>10.1109/ICIME.2010.5477865</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 9781424452637 |
ispartof | 2010 2nd IEEE International Conference on Information Management and Engineering, 2010, p.439-443 |
issn | |
language | eng |
recordid | cdi_ieee_primary_5477865 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Artificial Neural Network (ANN) Artificial neural networks Inventory management Investments Multiple Regression Method Predictive models Process control Process planning Productivity Profitability Prognostic Model Project management Resource management |
title | Model building methodologies utilizing Artificial Neural Network (ANN) for performance of project planning, implementation and controlling processes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T07%3A13%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Model%20building%20methodologies%20utilizing%20Artificial%20Neural%20Network%20(ANN)%20for%20performance%20of%20project%20planning,%20implementation%20and%20controlling%20processes&rft.btitle=2010%202nd%20IEEE%20International%20Conference%20on%20Information%20Management%20and%20Engineering&rft.au=Gandapur,%20Muhammad&rft.date=2010-04&rft.spage=439&rft.epage=443&rft.pages=439-443&rft.isbn=9781424452637&rft.isbn_list=1424452635&rft_id=info:doi/10.1109/ICIME.2010.5477865&rft_dat=%3Cieee_6IE%3E5477865%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424452651&rft.eisbn_list=1424452651&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5477865&rfr_iscdi=true |