The research of outlier data cleaning based on accelerating method

During the data integration process, it puts forward the accelerating trend comparison method to deal with the outlier data in this paper. Namely outlier data is discovered through the accelerating trend comparison. At the end of this article, it gives a specific description of the algorithm of outl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Wang Heyong, Li Mingjian, Chen Bingchuan
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 155
container_issue
container_start_page 153
container_title
container_volume
creator Wang Heyong
Li Mingjian
Chen Bingchuan
description During the data integration process, it puts forward the accelerating trend comparison method to deal with the outlier data in this paper. Namely outlier data is discovered through the accelerating trend comparison. At the end of this article, it gives a specific description of the algorithm of outlier data cleaning results. It can improve the detection of outlier data and the data quality through the experiments.
doi_str_mv 10.1109/ICIME.2010.5477757
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5477757</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5477757</ieee_id><sourcerecordid>5477757</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-f416c58655818a17fa47ad2cebb65ccb9106571aeb1e44339fd1e58e6f3eaa503</originalsourceid><addsrcrecordid>eNpVkMFOwzAQRI1QJaDkB-DiH0jxxl47PkJVSqQiLrlXG2dDgtIEOeHA3xNEL8xl9GakOYwQd6A2AMo_FNvidbfJ1MJonHPoLkTiXQ4mMwYzi3D5j7VbiZtMKe81IqgrkUzTh1q0lE7Za_FUtiwjT0wxtHJs5Pg19x1HWdNMMvRMQze8y4omruU4SAqBe440_6YnntuxvhWrhvqJk7OvRfm8K7cv6eFtX2wfD2nn1Zw2BmzA3CLmkBO4hoyjOgtcVRZDqDwoiw6IK2BjtPZNDYw520YzESq9Fvd_sx0zHz9jd6L4fTy_oH8AU-JN9w</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>The research of outlier data cleaning based on accelerating method</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Wang Heyong ; Li Mingjian ; Chen Bingchuan</creator><creatorcontrib>Wang Heyong ; Li Mingjian ; Chen Bingchuan</creatorcontrib><description>During the data integration process, it puts forward the accelerating trend comparison method to deal with the outlier data in this paper. Namely outlier data is discovered through the accelerating trend comparison. At the end of this article, it gives a specific description of the algorithm of outlier data cleaning results. It can improve the detection of outlier data and the data quality through the experiments.</description><identifier>ISBN: 9781424452637</identifier><identifier>ISBN: 1424452635</identifier><identifier>EISBN: 9781424452651</identifier><identifier>EISBN: 1424452651</identifier><identifier>DOI: 10.1109/ICIME.2010.5477757</identifier><identifier>LCCN: 2009935510</identifier><language>eng</language><publisher>IEEE</publisher><subject>Acceleration ; Cleaning ; Clustering algorithms ; Data Cleaning ; Educational institutions ; Explosives ; Extraterrestrial measurements ; Information technology ; Object detection ; Outlier Data ; Space technology ; Sun ; Trend Comparison</subject><ispartof>2010 2nd IEEE International Conference on Information Management and Engineering, 2010, p.153-155</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5477757$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5477757$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wang Heyong</creatorcontrib><creatorcontrib>Li Mingjian</creatorcontrib><creatorcontrib>Chen Bingchuan</creatorcontrib><title>The research of outlier data cleaning based on accelerating method</title><title>2010 2nd IEEE International Conference on Information Management and Engineering</title><addtitle>ICIME</addtitle><description>During the data integration process, it puts forward the accelerating trend comparison method to deal with the outlier data in this paper. Namely outlier data is discovered through the accelerating trend comparison. At the end of this article, it gives a specific description of the algorithm of outlier data cleaning results. It can improve the detection of outlier data and the data quality through the experiments.</description><subject>Acceleration</subject><subject>Cleaning</subject><subject>Clustering algorithms</subject><subject>Data Cleaning</subject><subject>Educational institutions</subject><subject>Explosives</subject><subject>Extraterrestrial measurements</subject><subject>Information technology</subject><subject>Object detection</subject><subject>Outlier Data</subject><subject>Space technology</subject><subject>Sun</subject><subject>Trend Comparison</subject><isbn>9781424452637</isbn><isbn>1424452635</isbn><isbn>9781424452651</isbn><isbn>1424452651</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVkMFOwzAQRI1QJaDkB-DiH0jxxl47PkJVSqQiLrlXG2dDgtIEOeHA3xNEL8xl9GakOYwQd6A2AMo_FNvidbfJ1MJonHPoLkTiXQ4mMwYzi3D5j7VbiZtMKe81IqgrkUzTh1q0lE7Za_FUtiwjT0wxtHJs5Pg19x1HWdNMMvRMQze8y4omruU4SAqBe440_6YnntuxvhWrhvqJk7OvRfm8K7cv6eFtX2wfD2nn1Zw2BmzA3CLmkBO4hoyjOgtcVRZDqDwoiw6IK2BjtPZNDYw520YzESq9Fvd_sx0zHz9jd6L4fTy_oH8AU-JN9w</recordid><startdate>201004</startdate><enddate>201004</enddate><creator>Wang Heyong</creator><creator>Li Mingjian</creator><creator>Chen Bingchuan</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201004</creationdate><title>The research of outlier data cleaning based on accelerating method</title><author>Wang Heyong ; Li Mingjian ; Chen Bingchuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-f416c58655818a17fa47ad2cebb65ccb9106571aeb1e44339fd1e58e6f3eaa503</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Acceleration</topic><topic>Cleaning</topic><topic>Clustering algorithms</topic><topic>Data Cleaning</topic><topic>Educational institutions</topic><topic>Explosives</topic><topic>Extraterrestrial measurements</topic><topic>Information technology</topic><topic>Object detection</topic><topic>Outlier Data</topic><topic>Space technology</topic><topic>Sun</topic><topic>Trend Comparison</topic><toplevel>online_resources</toplevel><creatorcontrib>Wang Heyong</creatorcontrib><creatorcontrib>Li Mingjian</creatorcontrib><creatorcontrib>Chen Bingchuan</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wang Heyong</au><au>Li Mingjian</au><au>Chen Bingchuan</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>The research of outlier data cleaning based on accelerating method</atitle><btitle>2010 2nd IEEE International Conference on Information Management and Engineering</btitle><stitle>ICIME</stitle><date>2010-04</date><risdate>2010</risdate><spage>153</spage><epage>155</epage><pages>153-155</pages><isbn>9781424452637</isbn><isbn>1424452635</isbn><eisbn>9781424452651</eisbn><eisbn>1424452651</eisbn><abstract>During the data integration process, it puts forward the accelerating trend comparison method to deal with the outlier data in this paper. Namely outlier data is discovered through the accelerating trend comparison. At the end of this article, it gives a specific description of the algorithm of outlier data cleaning results. It can improve the detection of outlier data and the data quality through the experiments.</abstract><pub>IEEE</pub><doi>10.1109/ICIME.2010.5477757</doi><tpages>3</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9781424452637
ispartof 2010 2nd IEEE International Conference on Information Management and Engineering, 2010, p.153-155
issn
language eng
recordid cdi_ieee_primary_5477757
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Acceleration
Cleaning
Clustering algorithms
Data Cleaning
Educational institutions
Explosives
Extraterrestrial measurements
Information technology
Object detection
Outlier Data
Space technology
Sun
Trend Comparison
title The research of outlier data cleaning based on accelerating method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T18%3A16%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=The%20research%20of%20outlier%20data%20cleaning%20based%20on%20accelerating%20method&rft.btitle=2010%202nd%20IEEE%20International%20Conference%20on%20Information%20Management%20and%20Engineering&rft.au=Wang%20Heyong&rft.date=2010-04&rft.spage=153&rft.epage=155&rft.pages=153-155&rft.isbn=9781424452637&rft.isbn_list=1424452635&rft_id=info:doi/10.1109/ICIME.2010.5477757&rft_dat=%3Cieee_6IE%3E5477757%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424452651&rft.eisbn_list=1424452651&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5477757&rfr_iscdi=true