A QoE-Based Measurement for DiffServ Multicasting Networks

Multimedia services are typically much more sensitive to throughput, delay, and packet loss than traditional services. These parameters give technical performances of the network but they do not reveal QoS perceived by users. Hence, how to capture users' overall perceptions when they are using...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Wu-Hsiao Hsu, Sheng-Cheng Yeh, Yuh-Pyng Shieh, Cheng-Ying Yang
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 190
container_issue
container_start_page 183
container_title
container_volume
creator Wu-Hsiao Hsu
Sheng-Cheng Yeh
Yuh-Pyng Shieh
Cheng-Ying Yang
description Multimedia services are typically much more sensitive to throughput, delay, and packet loss than traditional services. These parameters give technical performances of the network but they do not reveal QoS perceived by users. Hence, how to capture users' overall perceptions when they are using network services is an important issue. In this paper, we simulate a streaming video environment in bandwidth broker (BB), and provide the data of measuring the quality of experience (QoE) for genetic algorithm (GA). After GA acquires these data, GA can use the proposed fitness function to measure the multicast group member's QoE, and decide whether to adjust a DiffServ-aware multicast tree (DAMT) according to the measured results. The simulation results have proved that the DAMTs adjusted by GA can satisfy the QoE of multicast group member.
doi_str_mv 10.1109/ICCSA.2010.51
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5476632</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5476632</ieee_id><sourcerecordid>5476632</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-117a245ddf836e7a6402a607dcaba4b8f7ab09e791e1f8abb6ec6cc8f27de1893</originalsourceid><addsrcrecordid>eNotjMtOwkAUQMcYEi2ydOVmfqA474e7WlFJQGNgT27bO2YUqJkpEv9eEj2bk7M5hFxzNuWc-dt5Xa-qqWCn1vyMFFwJpYwyQp-TglnjtfTeuxEpBGPeK8W5vCCTnD_YCS2sEO6S3FX0rZ-V95Cxo0uEfEi4w_1AQ5_oQwxhhembLg_bIbaQh7h_py84HPv0ma_IKMA24-TfY7J-nK3r53Lx-jSvq0UZPRtKzi0IpbsuOGnQglFMgGG2a6EB1bhgoWEerefIg4OmMdiatnVB2A6583JMbv62ERE3XynuIP1stLLGSCF_AeV1SPE</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A QoE-Based Measurement for DiffServ Multicasting Networks</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Wu-Hsiao Hsu ; Sheng-Cheng Yeh ; Yuh-Pyng Shieh ; Cheng-Ying Yang</creator><creatorcontrib>Wu-Hsiao Hsu ; Sheng-Cheng Yeh ; Yuh-Pyng Shieh ; Cheng-Ying Yang</creatorcontrib><description>Multimedia services are typically much more sensitive to throughput, delay, and packet loss than traditional services. These parameters give technical performances of the network but they do not reveal QoS perceived by users. Hence, how to capture users' overall perceptions when they are using network services is an important issue. In this paper, we simulate a streaming video environment in bandwidth broker (BB), and provide the data of measuring the quality of experience (QoE) for genetic algorithm (GA). After GA acquires these data, GA can use the proposed fitness function to measure the multicast group member's QoE, and decide whether to adjust a DiffServ-aware multicast tree (DAMT) according to the measured results. The simulation results have proved that the DAMTs adjusted by GA can satisfy the QoE of multicast group member.</description><identifier>ISBN: 0769539998</identifier><identifier>ISBN: 9780769539997</identifier><identifier>ISBN: 1424464617</identifier><identifier>ISBN: 9781424464616</identifier><identifier>EISBN: 1424464625</identifier><identifier>EISBN: 9781424464623</identifier><identifier>DOI: 10.1109/ICCSA.2010.51</identifier><identifier>LCCN: 2009944113</identifier><language>eng</language><publisher>IEEE</publisher><subject>Bandwidth ; Computational modeling ; Computer science ; DAMT ; Delay ; Diffserv networks ; Next generation networking ; QoE ; Quality of service ; Streaming media ; Telecommunication traffic ; Throughput</subject><ispartof>2010 International Conference on Computational Science and Its Applications, 2010, p.183-190</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5476632$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5476632$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wu-Hsiao Hsu</creatorcontrib><creatorcontrib>Sheng-Cheng Yeh</creatorcontrib><creatorcontrib>Yuh-Pyng Shieh</creatorcontrib><creatorcontrib>Cheng-Ying Yang</creatorcontrib><title>A QoE-Based Measurement for DiffServ Multicasting Networks</title><title>2010 International Conference on Computational Science and Its Applications</title><addtitle>ICCSA</addtitle><description>Multimedia services are typically much more sensitive to throughput, delay, and packet loss than traditional services. These parameters give technical performances of the network but they do not reveal QoS perceived by users. Hence, how to capture users' overall perceptions when they are using network services is an important issue. In this paper, we simulate a streaming video environment in bandwidth broker (BB), and provide the data of measuring the quality of experience (QoE) for genetic algorithm (GA). After GA acquires these data, GA can use the proposed fitness function to measure the multicast group member's QoE, and decide whether to adjust a DiffServ-aware multicast tree (DAMT) according to the measured results. The simulation results have proved that the DAMTs adjusted by GA can satisfy the QoE of multicast group member.</description><subject>Bandwidth</subject><subject>Computational modeling</subject><subject>Computer science</subject><subject>DAMT</subject><subject>Delay</subject><subject>Diffserv networks</subject><subject>Next generation networking</subject><subject>QoE</subject><subject>Quality of service</subject><subject>Streaming media</subject><subject>Telecommunication traffic</subject><subject>Throughput</subject><isbn>0769539998</isbn><isbn>9780769539997</isbn><isbn>1424464617</isbn><isbn>9781424464616</isbn><isbn>1424464625</isbn><isbn>9781424464623</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotjMtOwkAUQMcYEi2ydOVmfqA474e7WlFJQGNgT27bO2YUqJkpEv9eEj2bk7M5hFxzNuWc-dt5Xa-qqWCn1vyMFFwJpYwyQp-TglnjtfTeuxEpBGPeK8W5vCCTnD_YCS2sEO6S3FX0rZ-V95Cxo0uEfEi4w_1AQ5_oQwxhhembLg_bIbaQh7h_py84HPv0ma_IKMA24-TfY7J-nK3r53Lx-jSvq0UZPRtKzi0IpbsuOGnQglFMgGG2a6EB1bhgoWEerefIg4OmMdiatnVB2A6583JMbv62ERE3XynuIP1stLLGSCF_AeV1SPE</recordid><startdate>201003</startdate><enddate>201003</enddate><creator>Wu-Hsiao Hsu</creator><creator>Sheng-Cheng Yeh</creator><creator>Yuh-Pyng Shieh</creator><creator>Cheng-Ying Yang</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201003</creationdate><title>A QoE-Based Measurement for DiffServ Multicasting Networks</title><author>Wu-Hsiao Hsu ; Sheng-Cheng Yeh ; Yuh-Pyng Shieh ; Cheng-Ying Yang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-117a245ddf836e7a6402a607dcaba4b8f7ab09e791e1f8abb6ec6cc8f27de1893</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Bandwidth</topic><topic>Computational modeling</topic><topic>Computer science</topic><topic>DAMT</topic><topic>Delay</topic><topic>Diffserv networks</topic><topic>Next generation networking</topic><topic>QoE</topic><topic>Quality of service</topic><topic>Streaming media</topic><topic>Telecommunication traffic</topic><topic>Throughput</topic><toplevel>online_resources</toplevel><creatorcontrib>Wu-Hsiao Hsu</creatorcontrib><creatorcontrib>Sheng-Cheng Yeh</creatorcontrib><creatorcontrib>Yuh-Pyng Shieh</creatorcontrib><creatorcontrib>Cheng-Ying Yang</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wu-Hsiao Hsu</au><au>Sheng-Cheng Yeh</au><au>Yuh-Pyng Shieh</au><au>Cheng-Ying Yang</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A QoE-Based Measurement for DiffServ Multicasting Networks</atitle><btitle>2010 International Conference on Computational Science and Its Applications</btitle><stitle>ICCSA</stitle><date>2010-03</date><risdate>2010</risdate><spage>183</spage><epage>190</epage><pages>183-190</pages><isbn>0769539998</isbn><isbn>9780769539997</isbn><isbn>1424464617</isbn><isbn>9781424464616</isbn><eisbn>1424464625</eisbn><eisbn>9781424464623</eisbn><abstract>Multimedia services are typically much more sensitive to throughput, delay, and packet loss than traditional services. These parameters give technical performances of the network but they do not reveal QoS perceived by users. Hence, how to capture users' overall perceptions when they are using network services is an important issue. In this paper, we simulate a streaming video environment in bandwidth broker (BB), and provide the data of measuring the quality of experience (QoE) for genetic algorithm (GA). After GA acquires these data, GA can use the proposed fitness function to measure the multicast group member's QoE, and decide whether to adjust a DiffServ-aware multicast tree (DAMT) according to the measured results. The simulation results have proved that the DAMTs adjusted by GA can satisfy the QoE of multicast group member.</abstract><pub>IEEE</pub><doi>10.1109/ICCSA.2010.51</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 0769539998
ispartof 2010 International Conference on Computational Science and Its Applications, 2010, p.183-190
issn
language eng
recordid cdi_ieee_primary_5476632
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Bandwidth
Computational modeling
Computer science
DAMT
Delay
Diffserv networks
Next generation networking
QoE
Quality of service
Streaming media
Telecommunication traffic
Throughput
title A QoE-Based Measurement for DiffServ Multicasting Networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T01%3A18%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20QoE-Based%20Measurement%20for%20DiffServ%20Multicasting%20Networks&rft.btitle=2010%20International%20Conference%20on%20Computational%20Science%20and%20Its%20Applications&rft.au=Wu-Hsiao%20Hsu&rft.date=2010-03&rft.spage=183&rft.epage=190&rft.pages=183-190&rft.isbn=0769539998&rft.isbn_list=9780769539997&rft.isbn_list=1424464617&rft.isbn_list=9781424464616&rft_id=info:doi/10.1109/ICCSA.2010.51&rft_dat=%3Cieee_6IE%3E5476632%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424464625&rft.eisbn_list=9781424464623&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5476632&rfr_iscdi=true