A Hotel Recommendation System Based on Collaborative Filtering and Rankboost Algorithm

A hotel recommendation system based on collaborative filtering method of clustering and Rankboost algorithm proposed in this paper, which can avoid the cold-start and scalability problems existing in traditional collaborative filtering. One can find a hotel quickly and efficiently when he uses this...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Gao Huming, Li Weili
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 320
container_issue
container_start_page 317
container_title
container_volume 1
creator Gao Huming
Li Weili
description A hotel recommendation system based on collaborative filtering method of clustering and Rankboost algorithm proposed in this paper, which can avoid the cold-start and scalability problems existing in traditional collaborative filtering. One can find a hotel quickly and efficiently when he uses this hotel recommendation system.
doi_str_mv 10.1109/MMIT.2010.14
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5474286</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5474286</ieee_id><sourcerecordid>5474286</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-4d29877963e382b616eebf831912be07c4888c98366e92dde96a240f29d1bd103</originalsourceid><addsrcrecordid>eNpVzM1KAzEUBeCIFNTanTs3eYHW5CbmZzkO1hZahDq4LUlzW4MzE5kEoW9vi25cHT7O4RByx9mMc2Yf1utlMwN2prwgE6sNlyClUgzE5T9zNSI356UFAQauyCTn6BkorbRg-pq8V3SRCrZ0g7vUddgHV2Lq6dsxF-zok8sY6Ml1alvn03Bqv5HOY1twiP2Buj7Qjes_fUq50Ko9pCGWj-6WjPauzTj5yzFp5s9NvZiuXl-WdbWaRsvKVAawRmurBAoDXnGF6PdGcMvBI9M7aYzZWSOUQgshoFUOJNuDDdwHzsSY3P_eRkTcfg2xc8Nx-yi1BKPEDx1PU1w</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A Hotel Recommendation System Based on Collaborative Filtering and Rankboost Algorithm</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Gao Huming ; Li Weili</creator><creatorcontrib>Gao Huming ; Li Weili</creatorcontrib><description>A hotel recommendation system based on collaborative filtering method of clustering and Rankboost algorithm proposed in this paper, which can avoid the cold-start and scalability problems existing in traditional collaborative filtering. One can find a hotel quickly and efficiently when he uses this hotel recommendation system.</description><identifier>ISBN: 9781424466016</identifier><identifier>ISBN: 1424466016</identifier><identifier>ISBN: 0769540082</identifier><identifier>ISBN: 9780769540085</identifier><identifier>EISBN: 9781424466023</identifier><identifier>EISBN: 1424466024</identifier><identifier>DOI: 10.1109/MMIT.2010.14</identifier><identifier>LCCN: 2010923282</identifier><language>eng</language><publisher>IEEE</publisher><subject>Clustering algorithms ; Filtering algorithms ; Finance ; Information filtering ; Information filters ; Information management ; Information technology ; International collaboration ; Multimedia systems ; Scalability</subject><ispartof>2010 Second International Conference on Multimedia and Information Technology, 2010, Vol.1, p.317-320</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5474286$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,27924,54919</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5474286$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Gao Huming</creatorcontrib><creatorcontrib>Li Weili</creatorcontrib><title>A Hotel Recommendation System Based on Collaborative Filtering and Rankboost Algorithm</title><title>2010 Second International Conference on Multimedia and Information Technology</title><addtitle>MMIT</addtitle><description>A hotel recommendation system based on collaborative filtering method of clustering and Rankboost algorithm proposed in this paper, which can avoid the cold-start and scalability problems existing in traditional collaborative filtering. One can find a hotel quickly and efficiently when he uses this hotel recommendation system.</description><subject>Clustering algorithms</subject><subject>Filtering algorithms</subject><subject>Finance</subject><subject>Information filtering</subject><subject>Information filters</subject><subject>Information management</subject><subject>Information technology</subject><subject>International collaboration</subject><subject>Multimedia systems</subject><subject>Scalability</subject><isbn>9781424466016</isbn><isbn>1424466016</isbn><isbn>0769540082</isbn><isbn>9780769540085</isbn><isbn>9781424466023</isbn><isbn>1424466024</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVzM1KAzEUBeCIFNTanTs3eYHW5CbmZzkO1hZahDq4LUlzW4MzE5kEoW9vi25cHT7O4RByx9mMc2Yf1utlMwN2prwgE6sNlyClUgzE5T9zNSI356UFAQauyCTn6BkorbRg-pq8V3SRCrZ0g7vUddgHV2Lq6dsxF-zok8sY6Ml1alvn03Bqv5HOY1twiP2Buj7Qjes_fUq50Ko9pCGWj-6WjPauzTj5yzFp5s9NvZiuXl-WdbWaRsvKVAawRmurBAoDXnGF6PdGcMvBI9M7aYzZWSOUQgshoFUOJNuDDdwHzsSY3P_eRkTcfg2xc8Nx-yi1BKPEDx1PU1w</recordid><startdate>201004</startdate><enddate>201004</enddate><creator>Gao Huming</creator><creator>Li Weili</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201004</creationdate><title>A Hotel Recommendation System Based on Collaborative Filtering and Rankboost Algorithm</title><author>Gao Huming ; Li Weili</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-4d29877963e382b616eebf831912be07c4888c98366e92dde96a240f29d1bd103</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Clustering algorithms</topic><topic>Filtering algorithms</topic><topic>Finance</topic><topic>Information filtering</topic><topic>Information filters</topic><topic>Information management</topic><topic>Information technology</topic><topic>International collaboration</topic><topic>Multimedia systems</topic><topic>Scalability</topic><toplevel>online_resources</toplevel><creatorcontrib>Gao Huming</creatorcontrib><creatorcontrib>Li Weili</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Gao Huming</au><au>Li Weili</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A Hotel Recommendation System Based on Collaborative Filtering and Rankboost Algorithm</atitle><btitle>2010 Second International Conference on Multimedia and Information Technology</btitle><stitle>MMIT</stitle><date>2010-04</date><risdate>2010</risdate><volume>1</volume><spage>317</spage><epage>320</epage><pages>317-320</pages><isbn>9781424466016</isbn><isbn>1424466016</isbn><isbn>0769540082</isbn><isbn>9780769540085</isbn><eisbn>9781424466023</eisbn><eisbn>1424466024</eisbn><abstract>A hotel recommendation system based on collaborative filtering method of clustering and Rankboost algorithm proposed in this paper, which can avoid the cold-start and scalability problems existing in traditional collaborative filtering. One can find a hotel quickly and efficiently when he uses this hotel recommendation system.</abstract><pub>IEEE</pub><doi>10.1109/MMIT.2010.14</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9781424466016
ispartof 2010 Second International Conference on Multimedia and Information Technology, 2010, Vol.1, p.317-320
issn
language eng
recordid cdi_ieee_primary_5474286
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Clustering algorithms
Filtering algorithms
Finance
Information filtering
Information filters
Information management
Information technology
International collaboration
Multimedia systems
Scalability
title A Hotel Recommendation System Based on Collaborative Filtering and Rankboost Algorithm
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T12%3A55%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20Hotel%20Recommendation%20System%20Based%20on%20Collaborative%20Filtering%20and%20Rankboost%20Algorithm&rft.btitle=2010%20Second%20International%20Conference%20on%20Multimedia%20and%20Information%20Technology&rft.au=Gao%20Huming&rft.date=2010-04&rft.volume=1&rft.spage=317&rft.epage=320&rft.pages=317-320&rft.isbn=9781424466016&rft.isbn_list=1424466016&rft.isbn_list=0769540082&rft.isbn_list=9780769540085&rft_id=info:doi/10.1109/MMIT.2010.14&rft_dat=%3Cieee_6IE%3E5474286%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424466023&rft.eisbn_list=1424466024&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5474286&rfr_iscdi=true