A 1-NN preclassifier for fuzzy k-NN rule
A two-stage classification scheme is presented. In the first stage it is decided which of the two rules, 1-NN or fuzzy k-NN, will be used in the second stage. The proposed approach leads to significant acceleration of the learning process as well as the classification phase.
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 238 vol.4 |
---|---|
container_issue | |
container_start_page | 234 |
container_title | |
container_volume | 4 |
creator | Jozwik, A. Chmieleski, L. Cudny, W. Sklodowski, M. |
description | A two-stage classification scheme is presented. In the first stage it is decided which of the two rules, 1-NN or fuzzy k-NN, will be used in the second stage. The proposed approach leads to significant acceleration of the learning process as well as the classification phase. |
doi_str_mv | 10.1109/ICPR.1996.547422 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_547422</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>547422</ieee_id><sourcerecordid>547422</sourcerecordid><originalsourceid>FETCH-LOGICAL-i87t-89a8d5a407c569f7186417c5a05cd4844c58d1b089ab9b8c087acdfd349b1a633</originalsourceid><addsrcrecordid>eNotT01LAzEUDH6AS7t38bRHL1nzsvl4OZZFa6FUKb2XbD4gumLZ2EP7643UgWEG5vGYIeQeWAvAzNOqf9-2YIxqpdCC8ytSceyAaqHlNamNRoaASnPkeEMqYBKoUBLuSJ3zByuQEpUyFXlcNEA3m-YwBTfanFNMYWrid-HxfD41n3_hdBzDnNxGO-ZQ_-uM7F6ed_0rXb8tV_1iTRPqH4rGopdWMO2kMlGXEgKKt0w6L1AIJ9HDwMrdYAZ0DLV1PvpOmAGs6roZebi8TSGE_WFKX3Y67S8ru18e4EEe</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A 1-NN preclassifier for fuzzy k-NN rule</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Jozwik, A. ; Chmieleski, L. ; Cudny, W. ; Sklodowski, M.</creator><creatorcontrib>Jozwik, A. ; Chmieleski, L. ; Cudny, W. ; Sklodowski, M.</creatorcontrib><description>A two-stage classification scheme is presented. In the first stage it is decided which of the two rules, 1-NN or fuzzy k-NN, will be used in the second stage. The proposed approach leads to significant acceleration of the learning process as well as the classification phase.</description><identifier>ISSN: 1051-4651</identifier><identifier>ISBN: 9780818672828</identifier><identifier>ISBN: 081867282X</identifier><identifier>EISSN: 2831-7475</identifier><identifier>DOI: 10.1109/ICPR.1996.547422</identifier><language>eng</language><publisher>IEEE</publisher><subject>Acceleration ; Biomedical engineering ; Biomedical measurements ; Costs ; Cybernetics ; Error analysis ; Image processing ; Neural networks ; Pattern recognition ; Probability</subject><ispartof>Proceedings of 13th International Conference on Pattern Recognition, 1996, Vol.4, p.234-238 vol.4</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/547422$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,777,781,786,787,2053,4037,4038,27907,54902</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/547422$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Jozwik, A.</creatorcontrib><creatorcontrib>Chmieleski, L.</creatorcontrib><creatorcontrib>Cudny, W.</creatorcontrib><creatorcontrib>Sklodowski, M.</creatorcontrib><title>A 1-NN preclassifier for fuzzy k-NN rule</title><title>Proceedings of 13th International Conference on Pattern Recognition</title><addtitle>ICPR</addtitle><description>A two-stage classification scheme is presented. In the first stage it is decided which of the two rules, 1-NN or fuzzy k-NN, will be used in the second stage. The proposed approach leads to significant acceleration of the learning process as well as the classification phase.</description><subject>Acceleration</subject><subject>Biomedical engineering</subject><subject>Biomedical measurements</subject><subject>Costs</subject><subject>Cybernetics</subject><subject>Error analysis</subject><subject>Image processing</subject><subject>Neural networks</subject><subject>Pattern recognition</subject><subject>Probability</subject><issn>1051-4651</issn><issn>2831-7475</issn><isbn>9780818672828</isbn><isbn>081867282X</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>1996</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotT01LAzEUDH6AS7t38bRHL1nzsvl4OZZFa6FUKb2XbD4gumLZ2EP7643UgWEG5vGYIeQeWAvAzNOqf9-2YIxqpdCC8ytSceyAaqHlNamNRoaASnPkeEMqYBKoUBLuSJ3zByuQEpUyFXlcNEA3m-YwBTfanFNMYWrid-HxfD41n3_hdBzDnNxGO-ZQ_-uM7F6ed_0rXb8tV_1iTRPqH4rGopdWMO2kMlGXEgKKt0w6L1AIJ9HDwMrdYAZ0DLV1PvpOmAGs6roZebi8TSGE_WFKX3Y67S8ru18e4EEe</recordid><startdate>1996</startdate><enddate>1996</enddate><creator>Jozwik, A.</creator><creator>Chmieleski, L.</creator><creator>Cudny, W.</creator><creator>Sklodowski, M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>1996</creationdate><title>A 1-NN preclassifier for fuzzy k-NN rule</title><author>Jozwik, A. ; Chmieleski, L. ; Cudny, W. ; Sklodowski, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i87t-89a8d5a407c569f7186417c5a05cd4844c58d1b089ab9b8c087acdfd349b1a633</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>1996</creationdate><topic>Acceleration</topic><topic>Biomedical engineering</topic><topic>Biomedical measurements</topic><topic>Costs</topic><topic>Cybernetics</topic><topic>Error analysis</topic><topic>Image processing</topic><topic>Neural networks</topic><topic>Pattern recognition</topic><topic>Probability</topic><toplevel>online_resources</toplevel><creatorcontrib>Jozwik, A.</creatorcontrib><creatorcontrib>Chmieleski, L.</creatorcontrib><creatorcontrib>Cudny, W.</creatorcontrib><creatorcontrib>Sklodowski, M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jozwik, A.</au><au>Chmieleski, L.</au><au>Cudny, W.</au><au>Sklodowski, M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A 1-NN preclassifier for fuzzy k-NN rule</atitle><btitle>Proceedings of 13th International Conference on Pattern Recognition</btitle><stitle>ICPR</stitle><date>1996</date><risdate>1996</risdate><volume>4</volume><spage>234</spage><epage>238 vol.4</epage><pages>234-238 vol.4</pages><issn>1051-4651</issn><eissn>2831-7475</eissn><isbn>9780818672828</isbn><isbn>081867282X</isbn><abstract>A two-stage classification scheme is presented. In the first stage it is decided which of the two rules, 1-NN or fuzzy k-NN, will be used in the second stage. The proposed approach leads to significant acceleration of the learning process as well as the classification phase.</abstract><pub>IEEE</pub><doi>10.1109/ICPR.1996.547422</doi></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1051-4651 |
ispartof | Proceedings of 13th International Conference on Pattern Recognition, 1996, Vol.4, p.234-238 vol.4 |
issn | 1051-4651 2831-7475 |
language | eng |
recordid | cdi_ieee_primary_547422 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Acceleration Biomedical engineering Biomedical measurements Costs Cybernetics Error analysis Image processing Neural networks Pattern recognition Probability |
title | A 1-NN preclassifier for fuzzy k-NN rule |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T08%3A59%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%201-NN%20preclassifier%20for%20fuzzy%20k-NN%20rule&rft.btitle=Proceedings%20of%2013th%20International%20Conference%20on%20Pattern%20Recognition&rft.au=Jozwik,%20A.&rft.date=1996&rft.volume=4&rft.spage=234&rft.epage=238%20vol.4&rft.pages=234-238%20vol.4&rft.issn=1051-4651&rft.eissn=2831-7475&rft.isbn=9780818672828&rft.isbn_list=081867282X&rft_id=info:doi/10.1109/ICPR.1996.547422&rft_dat=%3Cieee_6IE%3E547422%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=547422&rfr_iscdi=true |