Adaptive neural model predictive control for the grape juice concentration process

The four-stage evaporator is the core of the process in the manufacture of concentrated grape juice. The dynamic features of this process are very complex due to inputs and outputs constraints, time delays, loop interactions and the persistent unmeasured disturbances that affect it. Therefore, this...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Suárez, Graciela I, Ortiz, Oscar A, Aballay, Pablo M, Aros, Nelson H
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 63
container_issue
container_start_page 57
container_title
container_volume
creator Suárez, Graciela I
Ortiz, Oscar A
Aballay, Pablo M
Aros, Nelson H
description The four-stage evaporator is the core of the process in the manufacture of concentrated grape juice. The dynamic features of this process are very complex due to inputs and outputs constraints, time delays, loop interactions and the persistent unmeasured disturbances that affect it. Therefore, this kind of process requires a robust control in order to assure a stable operation taking into account the changes in the organoleptic properties of the raw material and, to guarantee the quality of the concentrated product. This work proposes an adaptive neural model to control of a four-stage evaporator in a grape juice concentration plant. In order to obtain a more accurate process description the neural model is trained with data from simulation of a phenomenological model and afterwards, is validated with actual plant data. This strategy allows to carry out the training without to introduce disturbance in the real plant. Neural networks of different size are trained and the performance of one of the neural models is compared with the first principles model. In a last step, the performance of a model predictive control based on the neural model is evaluated for disturbance rejection and compared with a MPC controller based on the phenomenological model and with a PI controller. The achieved results allow us to conclude that the developed neural model predictive control is adequate to control effectively the four-stage evaporator.
doi_str_mv 10.1109/ICIT.2010.5472653
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5472653</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5472653</ieee_id><sourcerecordid>5472653</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-a66b4d94f7f675398570ade112693b6ec2d7d17bf55b005632d6fe202c887e2c3</originalsourceid><addsrcrecordid>eNo1UF9LwzAcjMhAN_sBxJd8gc78T_M4irrCQJC-jzT5RTO6paSd4Le3zHkvx91x93AIPVKyppSY56Zu2jUjs5RCMyX5DSqMrqhgQkhlFL9Fy38hzQItGSHG0Nnid6gYxwOZISRT2tyjj423wxS_AZ_gnG2Pj8lDj4cMPrqL79JpyqnHIWU8fQH-zHYAfDhHd8kczLGdYjrNpeRgHB_QIth-hOLKK9S-vrT1tty9vzX1ZldGQ6bSKtUJb0TQQWnJTSU1sR4oZcrwToFjXnuquyBlR4hUnHkVgBHmqkoDc3yFnv5mIwDshxyPNv_sr5fwX7NwU0c</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Adaptive neural model predictive control for the grape juice concentration process</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Suárez, Graciela I ; Ortiz, Oscar A ; Aballay, Pablo M ; Aros, Nelson H</creator><creatorcontrib>Suárez, Graciela I ; Ortiz, Oscar A ; Aballay, Pablo M ; Aros, Nelson H</creatorcontrib><description>The four-stage evaporator is the core of the process in the manufacture of concentrated grape juice. The dynamic features of this process are very complex due to inputs and outputs constraints, time delays, loop interactions and the persistent unmeasured disturbances that affect it. Therefore, this kind of process requires a robust control in order to assure a stable operation taking into account the changes in the organoleptic properties of the raw material and, to guarantee the quality of the concentrated product. This work proposes an adaptive neural model to control of a four-stage evaporator in a grape juice concentration plant. In order to obtain a more accurate process description the neural model is trained with data from simulation of a phenomenological model and afterwards, is validated with actual plant data. This strategy allows to carry out the training without to introduce disturbance in the real plant. Neural networks of different size are trained and the performance of one of the neural models is compared with the first principles model. In a last step, the performance of a model predictive control based on the neural model is evaluated for disturbance rejection and compared with a MPC controller based on the phenomenological model and with a PI controller. The achieved results allow us to conclude that the developed neural model predictive control is adequate to control effectively the four-stage evaporator.</description><identifier>ISBN: 1424456959</identifier><identifier>ISBN: 9781424456956</identifier><identifier>EISBN: 9781424456963</identifier><identifier>EISBN: 1424456975</identifier><identifier>EISBN: 9781424456970</identifier><identifier>EISBN: 1424456967</identifier><identifier>DOI: 10.1109/ICIT.2010.5472653</identifier><identifier>LCCN: 2009911423</identifier><language>eng</language><publisher>IEEE</publisher><subject>Adaptive control ; Artificial neural networks ; Delay effects ; Grape juice concentration process ; Manufacturing processes ; Model-based predictive control ; Neural networks ; Pipelines ; Predictive control ; Predictive models ; Programmable control ; Raw materials ; Robust control</subject><ispartof>2010 IEEE International Conference on Industrial Technology, 2010, p.57-63</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5472653$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5472653$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Suárez, Graciela I</creatorcontrib><creatorcontrib>Ortiz, Oscar A</creatorcontrib><creatorcontrib>Aballay, Pablo M</creatorcontrib><creatorcontrib>Aros, Nelson H</creatorcontrib><title>Adaptive neural model predictive control for the grape juice concentration process</title><title>2010 IEEE International Conference on Industrial Technology</title><addtitle>ICIT</addtitle><description>The four-stage evaporator is the core of the process in the manufacture of concentrated grape juice. The dynamic features of this process are very complex due to inputs and outputs constraints, time delays, loop interactions and the persistent unmeasured disturbances that affect it. Therefore, this kind of process requires a robust control in order to assure a stable operation taking into account the changes in the organoleptic properties of the raw material and, to guarantee the quality of the concentrated product. This work proposes an adaptive neural model to control of a four-stage evaporator in a grape juice concentration plant. In order to obtain a more accurate process description the neural model is trained with data from simulation of a phenomenological model and afterwards, is validated with actual plant data. This strategy allows to carry out the training without to introduce disturbance in the real plant. Neural networks of different size are trained and the performance of one of the neural models is compared with the first principles model. In a last step, the performance of a model predictive control based on the neural model is evaluated for disturbance rejection and compared with a MPC controller based on the phenomenological model and with a PI controller. The achieved results allow us to conclude that the developed neural model predictive control is adequate to control effectively the four-stage evaporator.</description><subject>Adaptive control</subject><subject>Artificial neural networks</subject><subject>Delay effects</subject><subject>Grape juice concentration process</subject><subject>Manufacturing processes</subject><subject>Model-based predictive control</subject><subject>Neural networks</subject><subject>Pipelines</subject><subject>Predictive control</subject><subject>Predictive models</subject><subject>Programmable control</subject><subject>Raw materials</subject><subject>Robust control</subject><isbn>1424456959</isbn><isbn>9781424456956</isbn><isbn>9781424456963</isbn><isbn>1424456975</isbn><isbn>9781424456970</isbn><isbn>1424456967</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1UF9LwzAcjMhAN_sBxJd8gc78T_M4irrCQJC-jzT5RTO6paSd4Le3zHkvx91x93AIPVKyppSY56Zu2jUjs5RCMyX5DSqMrqhgQkhlFL9Fy38hzQItGSHG0Nnid6gYxwOZISRT2tyjj423wxS_AZ_gnG2Pj8lDj4cMPrqL79JpyqnHIWU8fQH-zHYAfDhHd8kczLGdYjrNpeRgHB_QIth-hOLKK9S-vrT1tty9vzX1ZldGQ6bSKtUJb0TQQWnJTSU1sR4oZcrwToFjXnuquyBlR4hUnHkVgBHmqkoDc3yFnv5mIwDshxyPNv_sr5fwX7NwU0c</recordid><startdate>201003</startdate><enddate>201003</enddate><creator>Suárez, Graciela I</creator><creator>Ortiz, Oscar A</creator><creator>Aballay, Pablo M</creator><creator>Aros, Nelson H</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201003</creationdate><title>Adaptive neural model predictive control for the grape juice concentration process</title><author>Suárez, Graciela I ; Ortiz, Oscar A ; Aballay, Pablo M ; Aros, Nelson H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-a66b4d94f7f675398570ade112693b6ec2d7d17bf55b005632d6fe202c887e2c3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Adaptive control</topic><topic>Artificial neural networks</topic><topic>Delay effects</topic><topic>Grape juice concentration process</topic><topic>Manufacturing processes</topic><topic>Model-based predictive control</topic><topic>Neural networks</topic><topic>Pipelines</topic><topic>Predictive control</topic><topic>Predictive models</topic><topic>Programmable control</topic><topic>Raw materials</topic><topic>Robust control</topic><toplevel>online_resources</toplevel><creatorcontrib>Suárez, Graciela I</creatorcontrib><creatorcontrib>Ortiz, Oscar A</creatorcontrib><creatorcontrib>Aballay, Pablo M</creatorcontrib><creatorcontrib>Aros, Nelson H</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Suárez, Graciela I</au><au>Ortiz, Oscar A</au><au>Aballay, Pablo M</au><au>Aros, Nelson H</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Adaptive neural model predictive control for the grape juice concentration process</atitle><btitle>2010 IEEE International Conference on Industrial Technology</btitle><stitle>ICIT</stitle><date>2010-03</date><risdate>2010</risdate><spage>57</spage><epage>63</epage><pages>57-63</pages><isbn>1424456959</isbn><isbn>9781424456956</isbn><eisbn>9781424456963</eisbn><eisbn>1424456975</eisbn><eisbn>9781424456970</eisbn><eisbn>1424456967</eisbn><abstract>The four-stage evaporator is the core of the process in the manufacture of concentrated grape juice. The dynamic features of this process are very complex due to inputs and outputs constraints, time delays, loop interactions and the persistent unmeasured disturbances that affect it. Therefore, this kind of process requires a robust control in order to assure a stable operation taking into account the changes in the organoleptic properties of the raw material and, to guarantee the quality of the concentrated product. This work proposes an adaptive neural model to control of a four-stage evaporator in a grape juice concentration plant. In order to obtain a more accurate process description the neural model is trained with data from simulation of a phenomenological model and afterwards, is validated with actual plant data. This strategy allows to carry out the training without to introduce disturbance in the real plant. Neural networks of different size are trained and the performance of one of the neural models is compared with the first principles model. In a last step, the performance of a model predictive control based on the neural model is evaluated for disturbance rejection and compared with a MPC controller based on the phenomenological model and with a PI controller. The achieved results allow us to conclude that the developed neural model predictive control is adequate to control effectively the four-stage evaporator.</abstract><pub>IEEE</pub><doi>10.1109/ICIT.2010.5472653</doi><tpages>7</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 1424456959
ispartof 2010 IEEE International Conference on Industrial Technology, 2010, p.57-63
issn
language eng
recordid cdi_ieee_primary_5472653
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Adaptive control
Artificial neural networks
Delay effects
Grape juice concentration process
Manufacturing processes
Model-based predictive control
Neural networks
Pipelines
Predictive control
Predictive models
Programmable control
Raw materials
Robust control
title Adaptive neural model predictive control for the grape juice concentration process
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T04%3A30%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Adaptive%20neural%20model%20predictive%20control%20for%20the%20grape%20juice%20concentration%20process&rft.btitle=2010%20IEEE%20International%20Conference%20on%20Industrial%20Technology&rft.au=Sua%CC%81rez,%20Graciela%20I&rft.date=2010-03&rft.spage=57&rft.epage=63&rft.pages=57-63&rft.isbn=1424456959&rft.isbn_list=9781424456956&rft_id=info:doi/10.1109/ICIT.2010.5472653&rft_dat=%3Cieee_6IE%3E5472653%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424456963&rft.eisbn_list=1424456975&rft.eisbn_list=9781424456970&rft.eisbn_list=1424456967&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5472653&rfr_iscdi=true