Implementing the Himeno benchmark with CUDA on GPU clusters

This paper describes the use of CUDA to accelerate the Himeno benchmark on clusters with GPUs. The implementation is designed to optimize memory bandwidth utilization. Our approach achieves over 83% of the theoretical peak bandwidth on a NVIDIA Tesla C1060 GPU and performs at over 50 GFlops. A multi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Phillips, Everett H, Fatica, Massimiliano
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10
container_issue
container_start_page 1
container_title
container_volume
creator Phillips, Everett H
Fatica, Massimiliano
description This paper describes the use of CUDA to accelerate the Himeno benchmark on clusters with GPUs. The implementation is designed to optimize memory bandwidth utilization. Our approach achieves over 83% of the theoretical peak bandwidth on a NVIDIA Tesla C1060 GPU and performs at over 50 GFlops. A multi-GPU implementation that utilizes MPI alongside CUDA streams to overlap GPU execution with data transfers allows linear scaling and performs at over 800 GFlops on a cluster with 16 GPUs. The paper presents the optimizations required to achieve this level of performance.
doi_str_mv 10.1109/IPDPS.2010.5470394
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5470394</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5470394</ieee_id><sourcerecordid>5470394</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-fa0c271a204155d4b2b96c389185279187f9cfeebfff38a5c5706c62c7fe5d543</originalsourceid><addsrcrecordid>eNpFj0FLw0AUhFdUsNb-Ab3sH0h9-3Y3m8VTSbUNFAzYnkuyfWtWk7QkEfHfG7DgHGb4LsMMY_cC5kKAfczyZf42RxhZKwPSqgt2KxQqFSsl8PIfEK7YRGgJEYLRN2zW9x8wSmmMBUzYU9acamqoHUL7zoeK-DqMdOQlta5qiu6Tf4eh4uluueDHlq_yHXf1Vz9Q19-xa1_UPc3OOWXbl-dtuo42r6ssXWyiYGGIfAEOjSgQlND6oEosbexkYkWi0YxuvHWeqPTey6TQThuIXYzOeNIHreSUPfzVBiLan7owrvrZn3_LX82eSNE</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Implementing the Himeno benchmark with CUDA on GPU clusters</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Phillips, Everett H ; Fatica, Massimiliano</creator><creatorcontrib>Phillips, Everett H ; Fatica, Massimiliano</creatorcontrib><description>This paper describes the use of CUDA to accelerate the Himeno benchmark on clusters with GPUs. The implementation is designed to optimize memory bandwidth utilization. Our approach achieves over 83% of the theoretical peak bandwidth on a NVIDIA Tesla C1060 GPU and performs at over 50 GFlops. A multi-GPU implementation that utilizes MPI alongside CUDA streams to overlap GPU execution with data transfers allows linear scaling and performs at over 800 GFlops on a cluster with 16 GPUs. The paper presents the optimizations required to achieve this level of performance.</description><identifier>ISSN: 1530-2075</identifier><identifier>ISBN: 1424464420</identifier><identifier>ISBN: 9781424464425</identifier><identifier>EISBN: 1424464412</identifier><identifier>EISBN: 1424464439</identifier><identifier>EISBN: 9781424464418</identifier><identifier>EISBN: 9781424464432</identifier><identifier>DOI: 10.1109/IPDPS.2010.5470394</identifier><language>eng</language><publisher>IEEE</publisher><subject>Acceleration ; Bandwidth ; Clocks ; Convergence ; Design optimization ; Frequency ; Kernel ; Navier-Stokes equations ; Poisson equations ; Throughput</subject><ispartof>2010 IEEE International Symposium on Parallel &amp; Distributed Processing (IPDPS), 2010, p.1-10</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5470394$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,27904,54899</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5470394$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Phillips, Everett H</creatorcontrib><creatorcontrib>Fatica, Massimiliano</creatorcontrib><title>Implementing the Himeno benchmark with CUDA on GPU clusters</title><title>2010 IEEE International Symposium on Parallel &amp; Distributed Processing (IPDPS)</title><addtitle>IPDPS</addtitle><description>This paper describes the use of CUDA to accelerate the Himeno benchmark on clusters with GPUs. The implementation is designed to optimize memory bandwidth utilization. Our approach achieves over 83% of the theoretical peak bandwidth on a NVIDIA Tesla C1060 GPU and performs at over 50 GFlops. A multi-GPU implementation that utilizes MPI alongside CUDA streams to overlap GPU execution with data transfers allows linear scaling and performs at over 800 GFlops on a cluster with 16 GPUs. The paper presents the optimizations required to achieve this level of performance.</description><subject>Acceleration</subject><subject>Bandwidth</subject><subject>Clocks</subject><subject>Convergence</subject><subject>Design optimization</subject><subject>Frequency</subject><subject>Kernel</subject><subject>Navier-Stokes equations</subject><subject>Poisson equations</subject><subject>Throughput</subject><issn>1530-2075</issn><isbn>1424464420</isbn><isbn>9781424464425</isbn><isbn>1424464412</isbn><isbn>1424464439</isbn><isbn>9781424464418</isbn><isbn>9781424464432</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFj0FLw0AUhFdUsNb-Ab3sH0h9-3Y3m8VTSbUNFAzYnkuyfWtWk7QkEfHfG7DgHGb4LsMMY_cC5kKAfczyZf42RxhZKwPSqgt2KxQqFSsl8PIfEK7YRGgJEYLRN2zW9x8wSmmMBUzYU9acamqoHUL7zoeK-DqMdOQlta5qiu6Tf4eh4uluueDHlq_yHXf1Vz9Q19-xa1_UPc3OOWXbl-dtuo42r6ssXWyiYGGIfAEOjSgQlND6oEosbexkYkWi0YxuvHWeqPTey6TQThuIXYzOeNIHreSUPfzVBiLan7owrvrZn3_LX82eSNE</recordid><startdate>201004</startdate><enddate>201004</enddate><creator>Phillips, Everett H</creator><creator>Fatica, Massimiliano</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201004</creationdate><title>Implementing the Himeno benchmark with CUDA on GPU clusters</title><author>Phillips, Everett H ; Fatica, Massimiliano</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-fa0c271a204155d4b2b96c389185279187f9cfeebfff38a5c5706c62c7fe5d543</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Acceleration</topic><topic>Bandwidth</topic><topic>Clocks</topic><topic>Convergence</topic><topic>Design optimization</topic><topic>Frequency</topic><topic>Kernel</topic><topic>Navier-Stokes equations</topic><topic>Poisson equations</topic><topic>Throughput</topic><toplevel>online_resources</toplevel><creatorcontrib>Phillips, Everett H</creatorcontrib><creatorcontrib>Fatica, Massimiliano</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Phillips, Everett H</au><au>Fatica, Massimiliano</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Implementing the Himeno benchmark with CUDA on GPU clusters</atitle><btitle>2010 IEEE International Symposium on Parallel &amp; Distributed Processing (IPDPS)</btitle><stitle>IPDPS</stitle><date>2010-04</date><risdate>2010</risdate><spage>1</spage><epage>10</epage><pages>1-10</pages><issn>1530-2075</issn><isbn>1424464420</isbn><isbn>9781424464425</isbn><eisbn>1424464412</eisbn><eisbn>1424464439</eisbn><eisbn>9781424464418</eisbn><eisbn>9781424464432</eisbn><abstract>This paper describes the use of CUDA to accelerate the Himeno benchmark on clusters with GPUs. The implementation is designed to optimize memory bandwidth utilization. Our approach achieves over 83% of the theoretical peak bandwidth on a NVIDIA Tesla C1060 GPU and performs at over 50 GFlops. A multi-GPU implementation that utilizes MPI alongside CUDA streams to overlap GPU execution with data transfers allows linear scaling and performs at over 800 GFlops on a cluster with 16 GPUs. The paper presents the optimizations required to achieve this level of performance.</abstract><pub>IEEE</pub><doi>10.1109/IPDPS.2010.5470394</doi><tpages>10</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1530-2075
ispartof 2010 IEEE International Symposium on Parallel & Distributed Processing (IPDPS), 2010, p.1-10
issn 1530-2075
language eng
recordid cdi_ieee_primary_5470394
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Acceleration
Bandwidth
Clocks
Convergence
Design optimization
Frequency
Kernel
Navier-Stokes equations
Poisson equations
Throughput
title Implementing the Himeno benchmark with CUDA on GPU clusters
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T13%3A33%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Implementing%20the%20Himeno%20benchmark%20with%20CUDA%20on%20GPU%20clusters&rft.btitle=2010%20IEEE%20International%20Symposium%20on%20Parallel%20&%20Distributed%20Processing%20(IPDPS)&rft.au=Phillips,%20Everett%20H&rft.date=2010-04&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.issn=1530-2075&rft.isbn=1424464420&rft.isbn_list=9781424464425&rft_id=info:doi/10.1109/IPDPS.2010.5470394&rft_dat=%3Cieee_6IE%3E5470394%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424464412&rft.eisbn_list=1424464439&rft.eisbn_list=9781424464418&rft.eisbn_list=9781424464432&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5470394&rfr_iscdi=true