Capturing dynamics on multiple time scales: A hybrid approach for cluttered electromagnetic data

Many problems in electromagnetic signal analysis exhibit dynamics on a wide range of time scales against nonstationary clutter and noise. We consider a problem in which the relevant time scales can range from nanoseconds to hours or days (12 or 13 orders of magnitude). We present a hybrid algorithm...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Pawley, Norma H, Myers, Kary L, Galbraith, John M, Brumby, Steven P
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1691
container_issue
container_start_page 1687
container_title
container_volume
creator Pawley, Norma H
Myers, Kary L
Galbraith, John M
Brumby, Steven P
description Many problems in electromagnetic signal analysis exhibit dynamics on a wide range of time scales against nonstationary clutter and noise. We consider a problem in which the relevant time scales can range from nanoseconds to hours or days (12 or 13 orders of magnitude). We present a hybrid algorithm currently designed to capture the dynamic behavior at scales from nanoseconds to milliseconds (6 orders of magnitude) while remaining robust to clutter and noise. We draw from techniques of adaptive feature extraction, statistical machine learning, and discrete process modeling and present results on a simulated multimode problem. Our goals are to find a representation of the signal that allows us to identify which pulses were produced by a target emitter and to determine the operational mode of the target.
doi_str_mv 10.1109/ACSSC.2009.5469701
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5469701</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5469701</ieee_id><sourcerecordid>5469701</sourcerecordid><originalsourceid>FETCH-LOGICAL-i1341-433f2d181a20d83482648acfade7e9cd734f5de898f080650c61ce9245be7fbe3</originalsourceid><addsrcrecordid>eNo1kElOAzEURM0kEUIuABtfoIPHbptd1AqDFIlFYB1-7O_EqCe5nUVuD4hQm1o8qaRXhNxxNuec2YdFvV7Xc8GYnWtV2orxMzKzleFKKKWNKNU5mQhdlYWQTF6Qm3-g2SWZcKZNUUorr8lsHL_YT5QWVooJ-axhyIcUux31xw7a6Ebad7Q9NDkODdIcW6SjgwbHR7qg--M2RU9hGFIPbk9Dn6hrDjljQk-xQZdT38Kuwxwd9ZDhllwFaEacnXpKPp6W7_VLsXp7fq0XqyJyqXihpAzCc8NBMG-k-lUy4AJ4rNA6X0kVtEdjTWCGlZq5kju0QuktVmGLckru_3YjIm6GFFtIx83pLPkNpTtafw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Capturing dynamics on multiple time scales: A hybrid approach for cluttered electromagnetic data</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Pawley, Norma H ; Myers, Kary L ; Galbraith, John M ; Brumby, Steven P</creator><creatorcontrib>Pawley, Norma H ; Myers, Kary L ; Galbraith, John M ; Brumby, Steven P</creatorcontrib><description>Many problems in electromagnetic signal analysis exhibit dynamics on a wide range of time scales against nonstationary clutter and noise. We consider a problem in which the relevant time scales can range from nanoseconds to hours or days (12 or 13 orders of magnitude). We present a hybrid algorithm currently designed to capture the dynamic behavior at scales from nanoseconds to milliseconds (6 orders of magnitude) while remaining robust to clutter and noise. We draw from techniques of adaptive feature extraction, statistical machine learning, and discrete process modeling and present results on a simulated multimode problem. Our goals are to find a representation of the signal that allows us to identify which pulses were produced by a target emitter and to determine the operational mode of the target.</description><identifier>ISSN: 1058-6393</identifier><identifier>ISBN: 1424458250</identifier><identifier>ISBN: 9781424458257</identifier><identifier>EISSN: 2576-2303</identifier><identifier>EISBN: 9781424458264</identifier><identifier>EISBN: 1424458277</identifier><identifier>EISBN: 1424458269</identifier><identifier>EISBN: 9781424458271</identifier><identifier>DOI: 10.1109/ACSSC.2009.5469701</identifier><language>eng</language><publisher>IEEE</publisher><subject>Algorithm design and analysis ; Chirp ; Feature extraction ; Machine learning ; Machine learning algorithms ; Noise level ; Noise robustness ; Signal analysis ; Signal processing ; White noise</subject><ispartof>2009 Conference Record of the Forty-Third Asilomar Conference on Signals, Systems and Computers, 2009, p.1687-1691</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5469701$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,27924,54919</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5469701$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Pawley, Norma H</creatorcontrib><creatorcontrib>Myers, Kary L</creatorcontrib><creatorcontrib>Galbraith, John M</creatorcontrib><creatorcontrib>Brumby, Steven P</creatorcontrib><title>Capturing dynamics on multiple time scales: A hybrid approach for cluttered electromagnetic data</title><title>2009 Conference Record of the Forty-Third Asilomar Conference on Signals, Systems and Computers</title><addtitle>ACSSC</addtitle><description>Many problems in electromagnetic signal analysis exhibit dynamics on a wide range of time scales against nonstationary clutter and noise. We consider a problem in which the relevant time scales can range from nanoseconds to hours or days (12 or 13 orders of magnitude). We present a hybrid algorithm currently designed to capture the dynamic behavior at scales from nanoseconds to milliseconds (6 orders of magnitude) while remaining robust to clutter and noise. We draw from techniques of adaptive feature extraction, statistical machine learning, and discrete process modeling and present results on a simulated multimode problem. Our goals are to find a representation of the signal that allows us to identify which pulses were produced by a target emitter and to determine the operational mode of the target.</description><subject>Algorithm design and analysis</subject><subject>Chirp</subject><subject>Feature extraction</subject><subject>Machine learning</subject><subject>Machine learning algorithms</subject><subject>Noise level</subject><subject>Noise robustness</subject><subject>Signal analysis</subject><subject>Signal processing</subject><subject>White noise</subject><issn>1058-6393</issn><issn>2576-2303</issn><isbn>1424458250</isbn><isbn>9781424458257</isbn><isbn>9781424458264</isbn><isbn>1424458277</isbn><isbn>1424458269</isbn><isbn>9781424458271</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1kElOAzEURM0kEUIuABtfoIPHbptd1AqDFIlFYB1-7O_EqCe5nUVuD4hQm1o8qaRXhNxxNuec2YdFvV7Xc8GYnWtV2orxMzKzleFKKKWNKNU5mQhdlYWQTF6Qm3-g2SWZcKZNUUorr8lsHL_YT5QWVooJ-axhyIcUux31xw7a6Ebad7Q9NDkODdIcW6SjgwbHR7qg--M2RU9hGFIPbk9Dn6hrDjljQk-xQZdT38Kuwxwd9ZDhllwFaEacnXpKPp6W7_VLsXp7fq0XqyJyqXihpAzCc8NBMG-k-lUy4AJ4rNA6X0kVtEdjTWCGlZq5kju0QuktVmGLckru_3YjIm6GFFtIx83pLPkNpTtafw</recordid><startdate>200911</startdate><enddate>200911</enddate><creator>Pawley, Norma H</creator><creator>Myers, Kary L</creator><creator>Galbraith, John M</creator><creator>Brumby, Steven P</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>200911</creationdate><title>Capturing dynamics on multiple time scales: A hybrid approach for cluttered electromagnetic data</title><author>Pawley, Norma H ; Myers, Kary L ; Galbraith, John M ; Brumby, Steven P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i1341-433f2d181a20d83482648acfade7e9cd734f5de898f080650c61ce9245be7fbe3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Algorithm design and analysis</topic><topic>Chirp</topic><topic>Feature extraction</topic><topic>Machine learning</topic><topic>Machine learning algorithms</topic><topic>Noise level</topic><topic>Noise robustness</topic><topic>Signal analysis</topic><topic>Signal processing</topic><topic>White noise</topic><toplevel>online_resources</toplevel><creatorcontrib>Pawley, Norma H</creatorcontrib><creatorcontrib>Myers, Kary L</creatorcontrib><creatorcontrib>Galbraith, John M</creatorcontrib><creatorcontrib>Brumby, Steven P</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Pawley, Norma H</au><au>Myers, Kary L</au><au>Galbraith, John M</au><au>Brumby, Steven P</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Capturing dynamics on multiple time scales: A hybrid approach for cluttered electromagnetic data</atitle><btitle>2009 Conference Record of the Forty-Third Asilomar Conference on Signals, Systems and Computers</btitle><stitle>ACSSC</stitle><date>2009-11</date><risdate>2009</risdate><spage>1687</spage><epage>1691</epage><pages>1687-1691</pages><issn>1058-6393</issn><eissn>2576-2303</eissn><isbn>1424458250</isbn><isbn>9781424458257</isbn><eisbn>9781424458264</eisbn><eisbn>1424458277</eisbn><eisbn>1424458269</eisbn><eisbn>9781424458271</eisbn><abstract>Many problems in electromagnetic signal analysis exhibit dynamics on a wide range of time scales against nonstationary clutter and noise. We consider a problem in which the relevant time scales can range from nanoseconds to hours or days (12 or 13 orders of magnitude). We present a hybrid algorithm currently designed to capture the dynamic behavior at scales from nanoseconds to milliseconds (6 orders of magnitude) while remaining robust to clutter and noise. We draw from techniques of adaptive feature extraction, statistical machine learning, and discrete process modeling and present results on a simulated multimode problem. Our goals are to find a representation of the signal that allows us to identify which pulses were produced by a target emitter and to determine the operational mode of the target.</abstract><pub>IEEE</pub><doi>10.1109/ACSSC.2009.5469701</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1058-6393
ispartof 2009 Conference Record of the Forty-Third Asilomar Conference on Signals, Systems and Computers, 2009, p.1687-1691
issn 1058-6393
2576-2303
language eng
recordid cdi_ieee_primary_5469701
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Algorithm design and analysis
Chirp
Feature extraction
Machine learning
Machine learning algorithms
Noise level
Noise robustness
Signal analysis
Signal processing
White noise
title Capturing dynamics on multiple time scales: A hybrid approach for cluttered electromagnetic data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T06%3A57%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Capturing%20dynamics%20on%20multiple%20time%20scales:%20A%20hybrid%20approach%20for%20cluttered%20electromagnetic%20data&rft.btitle=2009%20Conference%20Record%20of%20the%20Forty-Third%20Asilomar%20Conference%20on%20Signals,%20Systems%20and%20Computers&rft.au=Pawley,%20Norma%20H&rft.date=2009-11&rft.spage=1687&rft.epage=1691&rft.pages=1687-1691&rft.issn=1058-6393&rft.eissn=2576-2303&rft.isbn=1424458250&rft.isbn_list=9781424458257&rft_id=info:doi/10.1109/ACSSC.2009.5469701&rft_dat=%3Cieee_6IE%3E5469701%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424458264&rft.eisbn_list=1424458277&rft.eisbn_list=1424458269&rft.eisbn_list=9781424458271&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5469701&rfr_iscdi=true