Spatial proximity based subspace decomposition for movement direction decoding of Local Field Potentials

Local Field Potentials (LFP) provides higher spatial resolution and SNR than EEG data and can be used to construct a Brain Computer Interface. In, we have shown that movement direction decoding can be done with about 90 % classification accuracy using spatial patterns (CSP) and Error Correction Outp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Tadipatri, Vijay A, Gowreesunker, B Vikrham, Tewfik, Ahmed H, Ince, Nuri F, Ashe, James, Pellizzer, Giuseppe
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1093
container_issue
container_start_page 1090
container_title
container_volume
creator Tadipatri, Vijay A
Gowreesunker, B Vikrham
Tewfik, Ahmed H
Ince, Nuri F
Ashe, James
Pellizzer, Giuseppe
description Local Field Potentials (LFP) provides higher spatial resolution and SNR than EEG data and can be used to construct a Brain Computer Interface. In, we have shown that movement direction decoding can be done with about 90 % classification accuracy using spatial patterns (CSP) and Error Correction Output Codes (ECOC). However, a major challenge in this study is to make this method more robust to inter-session variability of the LFP data, where state-of-the-art results are in the high 70 percent. In, we have demonstrated that LFP features that are recurrent across sessions can be extracted using a subspace learning method and used to improve the CSP +ECOC classifier. In this work, we propose an extension of the subspace learning method that exploits the spatial topology of the channels. This allows us to learn spatially diverse features, while previously the subspaces were being learned independently of the channel layout. We proposed a method where a block of samples from neighboring channels is used to find the subspaces and decode the directions. This approach is analogous to analyzing an 8×8 pixel map in image processing. Furthermore, this method allows a spatio-temporal classification, and it is indeed observed that different directions were providing higher accuracies at different time blocks. The proposed method can boosts the accuracy by at least 6% to bring classification to the mid 80 percent. Furthermore, we show early results where adding a pilot trial from the test session can be used as a calibration to further improve the spatio-temporal classification.
doi_str_mv 10.1109/ACSSC.2009.5469697
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5469697</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5469697</ieee_id><sourcerecordid>5469697</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-796aab0eddc524ff54f8e0253043279e83ab0bcf04b435bfd18ba86b013940a03</originalsourceid><addsrcrecordid>eNo1kMtOwzAURM1LopT-AGz8AynXz8TLKqKAVAmkdl_Z8TUYNXUUB0T_ngBlNiPNjM5iCLlhMGcMzN2iXq_rOQcwcyW10aY8ITNTVkxyKVXFtTwlE65KXXAB4oxc_RcKzsmEgaoKLYy4JLOc32GUVNwIPiFv684O0e5o16ev2MbhQJ3N6Gn-cLmzDVKPTWq7lOMQ056G1NM2fWKL-4H62GPzG_-MfNy_0hToKjUjbxlx5-lLGsbhyM_X5CKMhrOjT8lmeb-pH4vV88NTvVgV0cBQlEZb6wC9bxSXISgZKgSuBEjBS4OVGFvXBJBOCuWCZ5WzlXbAhJFgQUzJ7R82IuK262Nr-8P2-Jn4BkqkXe8</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Spatial proximity based subspace decomposition for movement direction decoding of Local Field Potentials</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Tadipatri, Vijay A ; Gowreesunker, B Vikrham ; Tewfik, Ahmed H ; Ince, Nuri F ; Ashe, James ; Pellizzer, Giuseppe</creator><creatorcontrib>Tadipatri, Vijay A ; Gowreesunker, B Vikrham ; Tewfik, Ahmed H ; Ince, Nuri F ; Ashe, James ; Pellizzer, Giuseppe</creatorcontrib><description>Local Field Potentials (LFP) provides higher spatial resolution and SNR than EEG data and can be used to construct a Brain Computer Interface. In, we have shown that movement direction decoding can be done with about 90 % classification accuracy using spatial patterns (CSP) and Error Correction Output Codes (ECOC). However, a major challenge in this study is to make this method more robust to inter-session variability of the LFP data, where state-of-the-art results are in the high 70 percent. In, we have demonstrated that LFP features that are recurrent across sessions can be extracted using a subspace learning method and used to improve the CSP +ECOC classifier. In this work, we propose an extension of the subspace learning method that exploits the spatial topology of the channels. This allows us to learn spatially diverse features, while previously the subspaces were being learned independently of the channel layout. We proposed a method where a block of samples from neighboring channels is used to find the subspaces and decode the directions. This approach is analogous to analyzing an 8×8 pixel map in image processing. Furthermore, this method allows a spatio-temporal classification, and it is indeed observed that different directions were providing higher accuracies at different time blocks. The proposed method can boosts the accuracy by at least 6% to bring classification to the mid 80 percent. Furthermore, we show early results where adding a pilot trial from the test session can be used as a calibration to further improve the spatio-temporal classification.</description><identifier>ISSN: 1058-6393</identifier><identifier>ISBN: 1424458250</identifier><identifier>ISBN: 9781424458257</identifier><identifier>EISSN: 2576-2303</identifier><identifier>EISBN: 9781424458264</identifier><identifier>EISBN: 1424458277</identifier><identifier>EISBN: 1424458269</identifier><identifier>EISBN: 9781424458271</identifier><identifier>DOI: 10.1109/ACSSC.2009.5469697</identifier><language>eng</language><publisher>IEEE</publisher><subject>Brain computer interfaces ; Data mining ; Decoding ; Electroencephalography ; Error correction codes ; Image analysis ; Learning systems ; Robustness ; Spatial resolution ; Topology</subject><ispartof>2009 Conference Record of the Forty-Third Asilomar Conference on Signals, Systems and Computers, 2009, p.1090-1093</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5469697$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5469697$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Tadipatri, Vijay A</creatorcontrib><creatorcontrib>Gowreesunker, B Vikrham</creatorcontrib><creatorcontrib>Tewfik, Ahmed H</creatorcontrib><creatorcontrib>Ince, Nuri F</creatorcontrib><creatorcontrib>Ashe, James</creatorcontrib><creatorcontrib>Pellizzer, Giuseppe</creatorcontrib><title>Spatial proximity based subspace decomposition for movement direction decoding of Local Field Potentials</title><title>2009 Conference Record of the Forty-Third Asilomar Conference on Signals, Systems and Computers</title><addtitle>ACSSC</addtitle><description>Local Field Potentials (LFP) provides higher spatial resolution and SNR than EEG data and can be used to construct a Brain Computer Interface. In, we have shown that movement direction decoding can be done with about 90 % classification accuracy using spatial patterns (CSP) and Error Correction Output Codes (ECOC). However, a major challenge in this study is to make this method more robust to inter-session variability of the LFP data, where state-of-the-art results are in the high 70 percent. In, we have demonstrated that LFP features that are recurrent across sessions can be extracted using a subspace learning method and used to improve the CSP +ECOC classifier. In this work, we propose an extension of the subspace learning method that exploits the spatial topology of the channels. This allows us to learn spatially diverse features, while previously the subspaces were being learned independently of the channel layout. We proposed a method where a block of samples from neighboring channels is used to find the subspaces and decode the directions. This approach is analogous to analyzing an 8×8 pixel map in image processing. Furthermore, this method allows a spatio-temporal classification, and it is indeed observed that different directions were providing higher accuracies at different time blocks. The proposed method can boosts the accuracy by at least 6% to bring classification to the mid 80 percent. Furthermore, we show early results where adding a pilot trial from the test session can be used as a calibration to further improve the spatio-temporal classification.</description><subject>Brain computer interfaces</subject><subject>Data mining</subject><subject>Decoding</subject><subject>Electroencephalography</subject><subject>Error correction codes</subject><subject>Image analysis</subject><subject>Learning systems</subject><subject>Robustness</subject><subject>Spatial resolution</subject><subject>Topology</subject><issn>1058-6393</issn><issn>2576-2303</issn><isbn>1424458250</isbn><isbn>9781424458257</isbn><isbn>9781424458264</isbn><isbn>1424458277</isbn><isbn>1424458269</isbn><isbn>9781424458271</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1kMtOwzAURM1LopT-AGz8AynXz8TLKqKAVAmkdl_Z8TUYNXUUB0T_ngBlNiPNjM5iCLlhMGcMzN2iXq_rOQcwcyW10aY8ITNTVkxyKVXFtTwlE65KXXAB4oxc_RcKzsmEgaoKLYy4JLOc32GUVNwIPiFv684O0e5o16ev2MbhQJ3N6Gn-cLmzDVKPTWq7lOMQ056G1NM2fWKL-4H62GPzG_-MfNy_0hToKjUjbxlx5-lLGsbhyM_X5CKMhrOjT8lmeb-pH4vV88NTvVgV0cBQlEZb6wC9bxSXISgZKgSuBEjBS4OVGFvXBJBOCuWCZ5WzlXbAhJFgQUzJ7R82IuK262Nr-8P2-Jn4BkqkXe8</recordid><startdate>200911</startdate><enddate>200911</enddate><creator>Tadipatri, Vijay A</creator><creator>Gowreesunker, B Vikrham</creator><creator>Tewfik, Ahmed H</creator><creator>Ince, Nuri F</creator><creator>Ashe, James</creator><creator>Pellizzer, Giuseppe</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>200911</creationdate><title>Spatial proximity based subspace decomposition for movement direction decoding of Local Field Potentials</title><author>Tadipatri, Vijay A ; Gowreesunker, B Vikrham ; Tewfik, Ahmed H ; Ince, Nuri F ; Ashe, James ; Pellizzer, Giuseppe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-796aab0eddc524ff54f8e0253043279e83ab0bcf04b435bfd18ba86b013940a03</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Brain computer interfaces</topic><topic>Data mining</topic><topic>Decoding</topic><topic>Electroencephalography</topic><topic>Error correction codes</topic><topic>Image analysis</topic><topic>Learning systems</topic><topic>Robustness</topic><topic>Spatial resolution</topic><topic>Topology</topic><toplevel>online_resources</toplevel><creatorcontrib>Tadipatri, Vijay A</creatorcontrib><creatorcontrib>Gowreesunker, B Vikrham</creatorcontrib><creatorcontrib>Tewfik, Ahmed H</creatorcontrib><creatorcontrib>Ince, Nuri F</creatorcontrib><creatorcontrib>Ashe, James</creatorcontrib><creatorcontrib>Pellizzer, Giuseppe</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tadipatri, Vijay A</au><au>Gowreesunker, B Vikrham</au><au>Tewfik, Ahmed H</au><au>Ince, Nuri F</au><au>Ashe, James</au><au>Pellizzer, Giuseppe</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Spatial proximity based subspace decomposition for movement direction decoding of Local Field Potentials</atitle><btitle>2009 Conference Record of the Forty-Third Asilomar Conference on Signals, Systems and Computers</btitle><stitle>ACSSC</stitle><date>2009-11</date><risdate>2009</risdate><spage>1090</spage><epage>1093</epage><pages>1090-1093</pages><issn>1058-6393</issn><eissn>2576-2303</eissn><isbn>1424458250</isbn><isbn>9781424458257</isbn><eisbn>9781424458264</eisbn><eisbn>1424458277</eisbn><eisbn>1424458269</eisbn><eisbn>9781424458271</eisbn><abstract>Local Field Potentials (LFP) provides higher spatial resolution and SNR than EEG data and can be used to construct a Brain Computer Interface. In, we have shown that movement direction decoding can be done with about 90 % classification accuracy using spatial patterns (CSP) and Error Correction Output Codes (ECOC). However, a major challenge in this study is to make this method more robust to inter-session variability of the LFP data, where state-of-the-art results are in the high 70 percent. In, we have demonstrated that LFP features that are recurrent across sessions can be extracted using a subspace learning method and used to improve the CSP +ECOC classifier. In this work, we propose an extension of the subspace learning method that exploits the spatial topology of the channels. This allows us to learn spatially diverse features, while previously the subspaces were being learned independently of the channel layout. We proposed a method where a block of samples from neighboring channels is used to find the subspaces and decode the directions. This approach is analogous to analyzing an 8×8 pixel map in image processing. Furthermore, this method allows a spatio-temporal classification, and it is indeed observed that different directions were providing higher accuracies at different time blocks. The proposed method can boosts the accuracy by at least 6% to bring classification to the mid 80 percent. Furthermore, we show early results where adding a pilot trial from the test session can be used as a calibration to further improve the spatio-temporal classification.</abstract><pub>IEEE</pub><doi>10.1109/ACSSC.2009.5469697</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1058-6393
ispartof 2009 Conference Record of the Forty-Third Asilomar Conference on Signals, Systems and Computers, 2009, p.1090-1093
issn 1058-6393
2576-2303
language eng
recordid cdi_ieee_primary_5469697
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Brain computer interfaces
Data mining
Decoding
Electroencephalography
Error correction codes
Image analysis
Learning systems
Robustness
Spatial resolution
Topology
title Spatial proximity based subspace decomposition for movement direction decoding of Local Field Potentials
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T03%3A16%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Spatial%20proximity%20based%20subspace%20decomposition%20for%20movement%20direction%20decoding%20of%20Local%20Field%20Potentials&rft.btitle=2009%20Conference%20Record%20of%20the%20Forty-Third%20Asilomar%20Conference%20on%20Signals,%20Systems%20and%20Computers&rft.au=Tadipatri,%20Vijay%20A&rft.date=2009-11&rft.spage=1090&rft.epage=1093&rft.pages=1090-1093&rft.issn=1058-6393&rft.eissn=2576-2303&rft.isbn=1424458250&rft.isbn_list=9781424458257&rft_id=info:doi/10.1109/ACSSC.2009.5469697&rft_dat=%3Cieee_6IE%3E5469697%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424458264&rft.eisbn_list=1424458277&rft.eisbn_list=1424458269&rft.eisbn_list=9781424458271&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5469697&rfr_iscdi=true