Migration processes

Optimization processes based on "active models" play central roles in many areas of computational vision as well as computational geometry. However, current models usually require highly complex and sophisticated mathematical machinery and at the same time they also suffer from a number of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Fejes, S., Rosenfeld, A.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 349 vol.2
container_issue
container_start_page 345
container_title
container_volume 2
creator Fejes, S.
Rosenfeld, A.
description Optimization processes based on "active models" play central roles in many areas of computational vision as well as computational geometry. However, current models usually require highly complex and sophisticated mathematical machinery and at the same time they also suffer from a number of limitations which impose restrictions on their applicability. In this paper a simple class of discrete active models, called migration processes, is presented. The processes are based on iterated averaging over neighborhoods defined by constant geodesic distance. It is demonstrated that the migration process model combines a number of advantages of different active models. The processes can be applied to derive natural solutions to a variety of optimization problems which include: defining (minimal) surface patches given their boundary curves; finding shortest paths joining set of points; and decomposing objects into "primitive" parts.
doi_str_mv 10.1109/ICPR.1996.546847
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_546847</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>546847</ieee_id><sourcerecordid>546847</sourcerecordid><originalsourceid>FETCH-LOGICAL-i89t-80942e6a69783dedb935b6f32ce0934fd6d27178f26fb7d8a57722bb2014dfe63</originalsourceid><addsrcrecordid>eNotj0tLAzEURi8-wKHOyo248g9kzM3j5mYpg49CpUW6L0mTSERtmXTjv7dQv83ZncMHcItyQJT-YT6u3gf0ngZriI07g06xRuGMs-fQe8eSkckpVnwBHUqLwpDFK-hb-5THWctEvoObt_oxhUPd_dzvp902t5bbNVyW8NVy_88ZrJ-f1uOrWCxf5uPjQlT2B8HSG5Up0LGmU07RaxupaLXN0mtTEiXl0HFRVKJLHKxzSsWoJJpUMukZ3J20Nee82U_1O0y_m9Mh_QfhMzrl</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Migration processes</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Fejes, S. ; Rosenfeld, A.</creator><creatorcontrib>Fejes, S. ; Rosenfeld, A.</creatorcontrib><description>Optimization processes based on "active models" play central roles in many areas of computational vision as well as computational geometry. However, current models usually require highly complex and sophisticated mathematical machinery and at the same time they also suffer from a number of limitations which impose restrictions on their applicability. In this paper a simple class of discrete active models, called migration processes, is presented. The processes are based on iterated averaging over neighborhoods defined by constant geodesic distance. It is demonstrated that the migration process model combines a number of advantages of different active models. The processes can be applied to derive natural solutions to a variety of optimization problems which include: defining (minimal) surface patches given their boundary curves; finding shortest paths joining set of points; and decomposing objects into "primitive" parts.</description><identifier>ISSN: 1051-4651</identifier><identifier>ISBN: 9780818672828</identifier><identifier>ISBN: 081867282X</identifier><identifier>EISSN: 2831-7475</identifier><identifier>DOI: 10.1109/ICPR.1996.546847</identifier><language>eng</language><publisher>IEEE</publisher><subject>Automation ; Computational geometry ; Computer vision ; Diffusion processes ; Educational institutions ; Laboratories ; Layout ; Machinery ; Mathematical model ; Solid modeling</subject><ispartof>Proceedings of 13th International Conference on Pattern Recognition, 1996, Vol.2, p.345-349 vol.2</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/546847$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,777,781,786,787,2052,4036,4037,27906,54901</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/546847$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Fejes, S.</creatorcontrib><creatorcontrib>Rosenfeld, A.</creatorcontrib><title>Migration processes</title><title>Proceedings of 13th International Conference on Pattern Recognition</title><addtitle>ICPR</addtitle><description>Optimization processes based on "active models" play central roles in many areas of computational vision as well as computational geometry. However, current models usually require highly complex and sophisticated mathematical machinery and at the same time they also suffer from a number of limitations which impose restrictions on their applicability. In this paper a simple class of discrete active models, called migration processes, is presented. The processes are based on iterated averaging over neighborhoods defined by constant geodesic distance. It is demonstrated that the migration process model combines a number of advantages of different active models. The processes can be applied to derive natural solutions to a variety of optimization problems which include: defining (minimal) surface patches given their boundary curves; finding shortest paths joining set of points; and decomposing objects into "primitive" parts.</description><subject>Automation</subject><subject>Computational geometry</subject><subject>Computer vision</subject><subject>Diffusion processes</subject><subject>Educational institutions</subject><subject>Laboratories</subject><subject>Layout</subject><subject>Machinery</subject><subject>Mathematical model</subject><subject>Solid modeling</subject><issn>1051-4651</issn><issn>2831-7475</issn><isbn>9780818672828</isbn><isbn>081867282X</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>1996</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj0tLAzEURi8-wKHOyo248g9kzM3j5mYpg49CpUW6L0mTSERtmXTjv7dQv83ZncMHcItyQJT-YT6u3gf0ngZriI07g06xRuGMs-fQe8eSkckpVnwBHUqLwpDFK-hb-5THWctEvoObt_oxhUPd_dzvp902t5bbNVyW8NVy_88ZrJ-f1uOrWCxf5uPjQlT2B8HSG5Up0LGmU07RaxupaLXN0mtTEiXl0HFRVKJLHKxzSsWoJJpUMukZ3J20Nee82U_1O0y_m9Mh_QfhMzrl</recordid><startdate>1996</startdate><enddate>1996</enddate><creator>Fejes, S.</creator><creator>Rosenfeld, A.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>1996</creationdate><title>Migration processes</title><author>Fejes, S. ; Rosenfeld, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i89t-80942e6a69783dedb935b6f32ce0934fd6d27178f26fb7d8a57722bb2014dfe63</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>1996</creationdate><topic>Automation</topic><topic>Computational geometry</topic><topic>Computer vision</topic><topic>Diffusion processes</topic><topic>Educational institutions</topic><topic>Laboratories</topic><topic>Layout</topic><topic>Machinery</topic><topic>Mathematical model</topic><topic>Solid modeling</topic><toplevel>online_resources</toplevel><creatorcontrib>Fejes, S.</creatorcontrib><creatorcontrib>Rosenfeld, A.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore (Online service)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Fejes, S.</au><au>Rosenfeld, A.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Migration processes</atitle><btitle>Proceedings of 13th International Conference on Pattern Recognition</btitle><stitle>ICPR</stitle><date>1996</date><risdate>1996</risdate><volume>2</volume><spage>345</spage><epage>349 vol.2</epage><pages>345-349 vol.2</pages><issn>1051-4651</issn><eissn>2831-7475</eissn><isbn>9780818672828</isbn><isbn>081867282X</isbn><abstract>Optimization processes based on "active models" play central roles in many areas of computational vision as well as computational geometry. However, current models usually require highly complex and sophisticated mathematical machinery and at the same time they also suffer from a number of limitations which impose restrictions on their applicability. In this paper a simple class of discrete active models, called migration processes, is presented. The processes are based on iterated averaging over neighborhoods defined by constant geodesic distance. It is demonstrated that the migration process model combines a number of advantages of different active models. The processes can be applied to derive natural solutions to a variety of optimization problems which include: defining (minimal) surface patches given their boundary curves; finding shortest paths joining set of points; and decomposing objects into "primitive" parts.</abstract><pub>IEEE</pub><doi>10.1109/ICPR.1996.546847</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1051-4651
ispartof Proceedings of 13th International Conference on Pattern Recognition, 1996, Vol.2, p.345-349 vol.2
issn 1051-4651
2831-7475
language eng
recordid cdi_ieee_primary_546847
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Automation
Computational geometry
Computer vision
Diffusion processes
Educational institutions
Laboratories
Layout
Machinery
Mathematical model
Solid modeling
title Migration processes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T17%3A17%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Migration%20processes&rft.btitle=Proceedings%20of%2013th%20International%20Conference%20on%20Pattern%20Recognition&rft.au=Fejes,%20S.&rft.date=1996&rft.volume=2&rft.spage=345&rft.epage=349%20vol.2&rft.pages=345-349%20vol.2&rft.issn=1051-4651&rft.eissn=2831-7475&rft.isbn=9780818672828&rft.isbn_list=081867282X&rft_id=info:doi/10.1109/ICPR.1996.546847&rft_dat=%3Cieee_6IE%3E546847%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=546847&rfr_iscdi=true