Mining Frequent Subgraph Patterns from Uncertain Graph Data

In many real applications, graph data is subject to uncertainties due to incompleteness and imprecision of data. Mining such uncertain graph data is semantically different from and computationally more challenging than mining conventional exact graph data. This paper investigates the problem of mini...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on knowledge and data engineering 2010-09, Vol.22 (9), p.1203-1218
Hauptverfasser: Zou, Zhaonian, Li, Jianzhong, Gao, Hong, Zhang, Shuo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In many real applications, graph data is subject to uncertainties due to incompleteness and imprecision of data. Mining such uncertain graph data is semantically different from and computationally more challenging than mining conventional exact graph data. This paper investigates the problem of mining uncertain graph data and especially focuses on mining frequent subgraph patterns on an uncertain graph database. A novel model of uncertain graphs is presented, and the frequent subgraph pattern mining problem is formalized by introducing a new measure, called expected support. This problem is proved to be NP-hard. An approximate mining algorithm is proposed to find a set of approximately frequent subgraph patterns by allowing an error tolerance on expected supports of discovered subgraph patterns. The algorithm uses efficient methods to determine whether a subgraph pattern can be output or not and a new pruning method to reduce the complexity of examining subgraph patterns. Analytical and experimental results show that the algorithm is very efficient, accurate, and scalable for large uncertain graph databases. To the best of our knowledge, this paper is the first one to investigate the problem of mining frequent subgraph patterns from uncertain graph data.
ISSN:1041-4347
1558-2191
DOI:10.1109/TKDE.2010.80