Adaptation and Intelligent Retrieval of Learning Content to Enhance On-line Courses

Enhancing on-line courses is one of the most important issues of current e-Learning platforms. These platforms try to upgrade from simple environments where learners can download documents and take tests to complex environments where the learning content is adapted and intelligently retrieved. This...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Mihaescu, Marian Cristian, Burdescu, Dumitru Dan, Ionascu, Costel Marian, Logofatu, Bogdan
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 328
container_issue
container_start_page 323
container_title
container_volume
creator Mihaescu, Marian Cristian
Burdescu, Dumitru Dan
Ionascu, Costel Marian
Logofatu, Bogdan
description Enhancing on-line courses is one of the most important issues of current e-Learning platforms. These platforms try to upgrade from simple environments where learners can download documents and take tests to complex environments where the learning content is adapted and intelligently retrieved. This paper presents a methodology for achieving such goals in an attempt to enhance on-line courses. The methodology makes intensive use of well structured content, embedded logging mechanism for learner's performed activities and usage of state-of-the-art algorithms for proper knowledge acquisition.
doi_str_mv 10.1109/ICNS.2010.70
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5460627</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5460627</ieee_id><sourcerecordid>5460627</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-151b5be9a7b736ede21981547f22b48956a305d0510a10eb1e151bec5d900c93</originalsourceid><addsrcrecordid>eNotjE1LxDAYhCMiKGtv3rzkD3R9k-brPS5l1YXigvW-pO3bNVLTpY2C_976MZdheGaGsRsBayEA73blU72WsEQLZyxD68Aa1AUahPPfLJRUSqO07pJl8_wGi5QWzrkrVm86f0o-hTFyHzu-i4mGIRwpJv5MaQr06Qc-9rwiP8UQj7wcl8pC08i38dXHlvg-5kOItKCPaab5ml30fpgp-_cVq--3L-VjXu0fduWmygNCyoUWjW4IvW1sYagjKdAJrWwvZaMcauML0B1oAV4ANYJ-FtTqDgFaLFbs9u81ENHhNIV3P30dtDJgpC2-ASVsT5I</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Adaptation and Intelligent Retrieval of Learning Content to Enhance On-line Courses</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Mihaescu, Marian Cristian ; Burdescu, Dumitru Dan ; Ionascu, Costel Marian ; Logofatu, Bogdan</creator><creatorcontrib>Mihaescu, Marian Cristian ; Burdescu, Dumitru Dan ; Ionascu, Costel Marian ; Logofatu, Bogdan</creatorcontrib><description>Enhancing on-line courses is one of the most important issues of current e-Learning platforms. These platforms try to upgrade from simple environments where learners can download documents and take tests to complex environments where the learning content is adapted and intelligently retrieved. This paper presents a methodology for achieving such goals in an attempt to enhance on-line courses. The methodology makes intensive use of well structured content, embedded logging mechanism for learner's performed activities and usage of state-of-the-art algorithms for proper knowledge acquisition.</description><identifier>ISBN: 9781424459278</identifier><identifier>ISBN: 1424459273</identifier><identifier>EISBN: 9780769539690</identifier><identifier>EISBN: 9781424459285</identifier><identifier>EISBN: 1424459281</identifier><identifier>EISBN: 0769539696</identifier><identifier>DOI: 10.1109/ICNS.2010.70</identifier><language>eng</language><publisher>IEEE</publisher><subject>Clustering algorithms ; content adaptation ; Content based retrieval ; Electronic learning ; Intelligent networks ; intelligent retrieval ; Knowledge acquisition ; Learning systems ; Machine learning algorithms ; on-line course ; Software engineering ; Statistical analysis ; Testing</subject><ispartof>2010 Sixth International Conference on Networking and Services, 2010, p.323-328</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5460627$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5460627$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Mihaescu, Marian Cristian</creatorcontrib><creatorcontrib>Burdescu, Dumitru Dan</creatorcontrib><creatorcontrib>Ionascu, Costel Marian</creatorcontrib><creatorcontrib>Logofatu, Bogdan</creatorcontrib><title>Adaptation and Intelligent Retrieval of Learning Content to Enhance On-line Courses</title><title>2010 Sixth International Conference on Networking and Services</title><addtitle>ICNS</addtitle><description>Enhancing on-line courses is one of the most important issues of current e-Learning platforms. These platforms try to upgrade from simple environments where learners can download documents and take tests to complex environments where the learning content is adapted and intelligently retrieved. This paper presents a methodology for achieving such goals in an attempt to enhance on-line courses. The methodology makes intensive use of well structured content, embedded logging mechanism for learner's performed activities and usage of state-of-the-art algorithms for proper knowledge acquisition.</description><subject>Clustering algorithms</subject><subject>content adaptation</subject><subject>Content based retrieval</subject><subject>Electronic learning</subject><subject>Intelligent networks</subject><subject>intelligent retrieval</subject><subject>Knowledge acquisition</subject><subject>Learning systems</subject><subject>Machine learning algorithms</subject><subject>on-line course</subject><subject>Software engineering</subject><subject>Statistical analysis</subject><subject>Testing</subject><isbn>9781424459278</isbn><isbn>1424459273</isbn><isbn>9780769539690</isbn><isbn>9781424459285</isbn><isbn>1424459281</isbn><isbn>0769539696</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotjE1LxDAYhCMiKGtv3rzkD3R9k-brPS5l1YXigvW-pO3bNVLTpY2C_976MZdheGaGsRsBayEA73blU72WsEQLZyxD68Aa1AUahPPfLJRUSqO07pJl8_wGi5QWzrkrVm86f0o-hTFyHzu-i4mGIRwpJv5MaQr06Qc-9rwiP8UQj7wcl8pC08i38dXHlvg-5kOItKCPaab5ml30fpgp-_cVq--3L-VjXu0fduWmygNCyoUWjW4IvW1sYagjKdAJrWwvZaMcauML0B1oAV4ANYJ-FtTqDgFaLFbs9u81ENHhNIV3P30dtDJgpC2-ASVsT5I</recordid><startdate>201003</startdate><enddate>201003</enddate><creator>Mihaescu, Marian Cristian</creator><creator>Burdescu, Dumitru Dan</creator><creator>Ionascu, Costel Marian</creator><creator>Logofatu, Bogdan</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201003</creationdate><title>Adaptation and Intelligent Retrieval of Learning Content to Enhance On-line Courses</title><author>Mihaescu, Marian Cristian ; Burdescu, Dumitru Dan ; Ionascu, Costel Marian ; Logofatu, Bogdan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-151b5be9a7b736ede21981547f22b48956a305d0510a10eb1e151bec5d900c93</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Clustering algorithms</topic><topic>content adaptation</topic><topic>Content based retrieval</topic><topic>Electronic learning</topic><topic>Intelligent networks</topic><topic>intelligent retrieval</topic><topic>Knowledge acquisition</topic><topic>Learning systems</topic><topic>Machine learning algorithms</topic><topic>on-line course</topic><topic>Software engineering</topic><topic>Statistical analysis</topic><topic>Testing</topic><toplevel>online_resources</toplevel><creatorcontrib>Mihaescu, Marian Cristian</creatorcontrib><creatorcontrib>Burdescu, Dumitru Dan</creatorcontrib><creatorcontrib>Ionascu, Costel Marian</creatorcontrib><creatorcontrib>Logofatu, Bogdan</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Mihaescu, Marian Cristian</au><au>Burdescu, Dumitru Dan</au><au>Ionascu, Costel Marian</au><au>Logofatu, Bogdan</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Adaptation and Intelligent Retrieval of Learning Content to Enhance On-line Courses</atitle><btitle>2010 Sixth International Conference on Networking and Services</btitle><stitle>ICNS</stitle><date>2010-03</date><risdate>2010</risdate><spage>323</spage><epage>328</epage><pages>323-328</pages><isbn>9781424459278</isbn><isbn>1424459273</isbn><eisbn>9780769539690</eisbn><eisbn>9781424459285</eisbn><eisbn>1424459281</eisbn><eisbn>0769539696</eisbn><abstract>Enhancing on-line courses is one of the most important issues of current e-Learning platforms. These platforms try to upgrade from simple environments where learners can download documents and take tests to complex environments where the learning content is adapted and intelligently retrieved. This paper presents a methodology for achieving such goals in an attempt to enhance on-line courses. The methodology makes intensive use of well structured content, embedded logging mechanism for learner's performed activities and usage of state-of-the-art algorithms for proper knowledge acquisition.</abstract><pub>IEEE</pub><doi>10.1109/ICNS.2010.70</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9781424459278
ispartof 2010 Sixth International Conference on Networking and Services, 2010, p.323-328
issn
language eng
recordid cdi_ieee_primary_5460627
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Clustering algorithms
content adaptation
Content based retrieval
Electronic learning
Intelligent networks
intelligent retrieval
Knowledge acquisition
Learning systems
Machine learning algorithms
on-line course
Software engineering
Statistical analysis
Testing
title Adaptation and Intelligent Retrieval of Learning Content to Enhance On-line Courses
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T00%3A02%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Adaptation%20and%20Intelligent%20Retrieval%20of%20Learning%20Content%20to%20Enhance%20On-line%20Courses&rft.btitle=2010%20Sixth%20International%20Conference%20on%20Networking%20and%20Services&rft.au=Mihaescu,%20Marian%20Cristian&rft.date=2010-03&rft.spage=323&rft.epage=328&rft.pages=323-328&rft.isbn=9781424459278&rft.isbn_list=1424459273&rft_id=info:doi/10.1109/ICNS.2010.70&rft_dat=%3Cieee_6IE%3E5460627%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9780769539690&rft.eisbn_list=9781424459285&rft.eisbn_list=1424459281&rft.eisbn_list=0769539696&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5460627&rfr_iscdi=true