NOx Prediction by Cylinder Pressure Based on RBF Neural Network in Diesel Engine

To meet electronic control technology demand based on cylinder pressure feedback in diesel engine, prediction of cylinder pressure feedback variable based on Radial Basis Function (RBF) neural networks is made. Briefly analyzed disadvantage of curve fitting method by multi-parameter input mapping si...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Wang, Jun, Zhang, Youtong, Xiong, Qinghui, Ding, Xiaoliang
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 795
container_issue
container_start_page 792
container_title
container_volume 2
creator Wang, Jun
Zhang, Youtong
Xiong, Qinghui
Ding, Xiaoliang
description To meet electronic control technology demand based on cylinder pressure feedback in diesel engine, prediction of cylinder pressure feedback variable based on Radial Basis Function (RBF) neural networks is made. Briefly analyzed disadvantage of curve fitting method by multi-parameter input mapping single output, radial basis function neural networks is introduced, faster algorithm of Orthogonal Least Squares (OLS) is adopted to calculate networks. Prediction model of cylinder pressure feedback variable based on radial basis function neural networks is present by using Nitric Oxide (NOx) as example, training time and prediction precision is analyzed, comparing with BP neural networks, verification of prediction result by RBF neural networks is made. Test result is shown that prediction model of cylinder pressure feedback variable based on radial basis function neural networks can meet the requirement of diesel engine.
doi_str_mv 10.1109/ICMTMA.2010.621
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5460165</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5460165</ieee_id><sourcerecordid>5460165</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-f60f5b33d3ee9dea896e10bdc9d86d2168c1c99f615492a3e1f1fb4d3f67d7403</originalsourceid><addsrcrecordid>eNotjM1OAjEURmuUREDWLtz0BQbvbTvtdAkjKAl_MezJzPTWVMfBTIcoby8GVyffOcnH2D3CGBHs4yJf7VaTsYCz0AKv2MiaDJVQKjXSmms2uAwAFDesLzA1CSoje2wgAKxV0mpxy0YxvgOAxCyzRvTZdr354duWXKi6cGh4eeL5qQ6No_ZPx3hsiU-LSI6f6-t0ztd0bIv6jO770H7w0PCnQJFqPmveQkN3rOeLOtLon0O2m892-Uuy3Dwv8skyCRa6xGvwaSmlk0TWUZFZTQilq6zLtBOoswora73GVFlRSEKPvlROem2cUSCH7OFyG4ho_9WGz6I97VOlAXUqfwG9gVK8</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>NOx Prediction by Cylinder Pressure Based on RBF Neural Network in Diesel Engine</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Wang, Jun ; Zhang, Youtong ; Xiong, Qinghui ; Ding, Xiaoliang</creator><creatorcontrib>Wang, Jun ; Zhang, Youtong ; Xiong, Qinghui ; Ding, Xiaoliang</creatorcontrib><description>To meet electronic control technology demand based on cylinder pressure feedback in diesel engine, prediction of cylinder pressure feedback variable based on Radial Basis Function (RBF) neural networks is made. Briefly analyzed disadvantage of curve fitting method by multi-parameter input mapping single output, radial basis function neural networks is introduced, faster algorithm of Orthogonal Least Squares (OLS) is adopted to calculate networks. Prediction model of cylinder pressure feedback variable based on radial basis function neural networks is present by using Nitric Oxide (NOx) as example, training time and prediction precision is analyzed, comparing with BP neural networks, verification of prediction result by RBF neural networks is made. Test result is shown that prediction model of cylinder pressure feedback variable based on radial basis function neural networks can meet the requirement of diesel engine.</description><identifier>ISSN: 2157-1473</identifier><identifier>ISBN: 1424450012</identifier><identifier>ISBN: 9781424450015</identifier><identifier>EISBN: 9781424457397</identifier><identifier>EISBN: 1424457394</identifier><identifier>DOI: 10.1109/ICMTMA.2010.621</identifier><identifier>LCCN: 2009943962</identifier><language>eng</language><publisher>IEEE</publisher><subject>Algorithm design and analysis ; Curve fitting ; cylinder pressure ; diesel engine ; Diesel engines ; Electric variables control ; Engine cylinders ; Neural networks ; Neurofeedback ; prediction ; Predictive models ; Pressure control ; radial basis function ; Radial basis function networks</subject><ispartof>2010 International Conference on Measuring Technology and Mechatronics Automation, 2010, Vol.2, p.792-795</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5460165$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>310,311,781,785,790,791,2059,27930,54925</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5460165$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wang, Jun</creatorcontrib><creatorcontrib>Zhang, Youtong</creatorcontrib><creatorcontrib>Xiong, Qinghui</creatorcontrib><creatorcontrib>Ding, Xiaoliang</creatorcontrib><title>NOx Prediction by Cylinder Pressure Based on RBF Neural Network in Diesel Engine</title><title>2010 International Conference on Measuring Technology and Mechatronics Automation</title><addtitle>ICMTMA</addtitle><description>To meet electronic control technology demand based on cylinder pressure feedback in diesel engine, prediction of cylinder pressure feedback variable based on Radial Basis Function (RBF) neural networks is made. Briefly analyzed disadvantage of curve fitting method by multi-parameter input mapping single output, radial basis function neural networks is introduced, faster algorithm of Orthogonal Least Squares (OLS) is adopted to calculate networks. Prediction model of cylinder pressure feedback variable based on radial basis function neural networks is present by using Nitric Oxide (NOx) as example, training time and prediction precision is analyzed, comparing with BP neural networks, verification of prediction result by RBF neural networks is made. Test result is shown that prediction model of cylinder pressure feedback variable based on radial basis function neural networks can meet the requirement of diesel engine.</description><subject>Algorithm design and analysis</subject><subject>Curve fitting</subject><subject>cylinder pressure</subject><subject>diesel engine</subject><subject>Diesel engines</subject><subject>Electric variables control</subject><subject>Engine cylinders</subject><subject>Neural networks</subject><subject>Neurofeedback</subject><subject>prediction</subject><subject>Predictive models</subject><subject>Pressure control</subject><subject>radial basis function</subject><subject>Radial basis function networks</subject><issn>2157-1473</issn><isbn>1424450012</isbn><isbn>9781424450015</isbn><isbn>9781424457397</isbn><isbn>1424457394</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotjM1OAjEURmuUREDWLtz0BQbvbTvtdAkjKAl_MezJzPTWVMfBTIcoby8GVyffOcnH2D3CGBHs4yJf7VaTsYCz0AKv2MiaDJVQKjXSmms2uAwAFDesLzA1CSoje2wgAKxV0mpxy0YxvgOAxCyzRvTZdr354duWXKi6cGh4eeL5qQ6No_ZPx3hsiU-LSI6f6-t0ztd0bIv6jO770H7w0PCnQJFqPmveQkN3rOeLOtLon0O2m892-Uuy3Dwv8skyCRa6xGvwaSmlk0TWUZFZTQilq6zLtBOoswora73GVFlRSEKPvlROem2cUSCH7OFyG4ho_9WGz6I97VOlAXUqfwG9gVK8</recordid><startdate>201003</startdate><enddate>201003</enddate><creator>Wang, Jun</creator><creator>Zhang, Youtong</creator><creator>Xiong, Qinghui</creator><creator>Ding, Xiaoliang</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201003</creationdate><title>NOx Prediction by Cylinder Pressure Based on RBF Neural Network in Diesel Engine</title><author>Wang, Jun ; Zhang, Youtong ; Xiong, Qinghui ; Ding, Xiaoliang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-f60f5b33d3ee9dea896e10bdc9d86d2168c1c99f615492a3e1f1fb4d3f67d7403</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Algorithm design and analysis</topic><topic>Curve fitting</topic><topic>cylinder pressure</topic><topic>diesel engine</topic><topic>Diesel engines</topic><topic>Electric variables control</topic><topic>Engine cylinders</topic><topic>Neural networks</topic><topic>Neurofeedback</topic><topic>prediction</topic><topic>Predictive models</topic><topic>Pressure control</topic><topic>radial basis function</topic><topic>Radial basis function networks</topic><toplevel>online_resources</toplevel><creatorcontrib>Wang, Jun</creatorcontrib><creatorcontrib>Zhang, Youtong</creatorcontrib><creatorcontrib>Xiong, Qinghui</creatorcontrib><creatorcontrib>Ding, Xiaoliang</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wang, Jun</au><au>Zhang, Youtong</au><au>Xiong, Qinghui</au><au>Ding, Xiaoliang</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>NOx Prediction by Cylinder Pressure Based on RBF Neural Network in Diesel Engine</atitle><btitle>2010 International Conference on Measuring Technology and Mechatronics Automation</btitle><stitle>ICMTMA</stitle><date>2010-03</date><risdate>2010</risdate><volume>2</volume><spage>792</spage><epage>795</epage><pages>792-795</pages><issn>2157-1473</issn><isbn>1424450012</isbn><isbn>9781424450015</isbn><eisbn>9781424457397</eisbn><eisbn>1424457394</eisbn><abstract>To meet electronic control technology demand based on cylinder pressure feedback in diesel engine, prediction of cylinder pressure feedback variable based on Radial Basis Function (RBF) neural networks is made. Briefly analyzed disadvantage of curve fitting method by multi-parameter input mapping single output, radial basis function neural networks is introduced, faster algorithm of Orthogonal Least Squares (OLS) is adopted to calculate networks. Prediction model of cylinder pressure feedback variable based on radial basis function neural networks is present by using Nitric Oxide (NOx) as example, training time and prediction precision is analyzed, comparing with BP neural networks, verification of prediction result by RBF neural networks is made. Test result is shown that prediction model of cylinder pressure feedback variable based on radial basis function neural networks can meet the requirement of diesel engine.</abstract><pub>IEEE</pub><doi>10.1109/ICMTMA.2010.621</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2157-1473
ispartof 2010 International Conference on Measuring Technology and Mechatronics Automation, 2010, Vol.2, p.792-795
issn 2157-1473
language eng
recordid cdi_ieee_primary_5460165
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Algorithm design and analysis
Curve fitting
cylinder pressure
diesel engine
Diesel engines
Electric variables control
Engine cylinders
Neural networks
Neurofeedback
prediction
Predictive models
Pressure control
radial basis function
Radial basis function networks
title NOx Prediction by Cylinder Pressure Based on RBF Neural Network in Diesel Engine
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T22%3A36%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=NOx%20Prediction%20by%20Cylinder%20Pressure%20Based%20on%20RBF%20Neural%20Network%20in%20Diesel%20Engine&rft.btitle=2010%20International%20Conference%20on%20Measuring%20Technology%20and%20Mechatronics%20Automation&rft.au=Wang,%20Jun&rft.date=2010-03&rft.volume=2&rft.spage=792&rft.epage=795&rft.pages=792-795&rft.issn=2157-1473&rft.isbn=1424450012&rft.isbn_list=9781424450015&rft_id=info:doi/10.1109/ICMTMA.2010.621&rft_dat=%3Cieee_6IE%3E5460165%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424457397&rft.eisbn_list=1424457394&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5460165&rfr_iscdi=true