Detection of human actions from a single example
We present an algorithm for detecting human actions based upon a single given video example of such actions. The proposed method is unsupervised, does not require learning, segmentation, or motion estimation. The novel features employed in our method are based on space-time locally adaptive regressi...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1970 |
---|---|
container_issue | |
container_start_page | 1965 |
container_title | |
container_volume | |
creator | Hae Jong Seo Milanfar, Peyman |
description | We present an algorithm for detecting human actions based upon a single given video example of such actions. The proposed method is unsupervised, does not require learning, segmentation, or motion estimation. The novel features employed in our method are based on space-time locally adaptive regression kernels. Our method is based on the dense computation of so-called space-time local regression kernels (i.e. local descriptors) from a query video, which measure the likeness of a voxel to its spatio-temporal surroundings. Salient features are then extracted from these descriptors using principal components analysis (PCA). These are efficiently compared against analogous features from the target video using a matrix generalization of the cosine similarity measure. The algorithm yields a scalar resemblance volume; each voxel indicating the like-lihood of similarity between the query video and all cubes in the target video. By employing non-parametric significance tests and non-maxima suppression, we accurately detect the presence and location of actions similar to the given query video. High performance is demonstrated on a challenging set of action data indicating successful detection of multiple complex actions even in the presence of fast motions. |
doi_str_mv | 10.1109/ICCV.2009.5459433 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5459433</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5459433</ieee_id><sourcerecordid>5459433</sourcerecordid><originalsourceid>FETCH-LOGICAL-i218t-be78bd16768c348ba03ca5a97206a90d18105225e59c13579e5972e79eab800e3</originalsourceid><addsrcrecordid>eNotj1tLw0AUhNcbmNb-APFl_0DSs5eT3fMosWqh0Bf1tWzSE43kUpII-u8Nmnn5ZhgYGCFuFSRKAa23WfaWaABK0CJZY87EQlltJynCcxFp4yF2CPZCrMj5udOAlyJSiBCjJboWi2H4BDCkfRoJeOCRi7HqWtmV8uOrCa0Mf3mQZd81Msihat9rlvwdmlPNN-KqDPXAq5lL8fq4ecme493-aZvd7-JKKz_GOTufH1XqUl8Y6_MApggYyGlIA8FReQWoNTJSoQw6mozTPDHkHoDNUtz971bMfDj1VRP6n8P83PwCd3BGfA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Detection of human actions from a single example</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Hae Jong Seo ; Milanfar, Peyman</creator><creatorcontrib>Hae Jong Seo ; Milanfar, Peyman</creatorcontrib><description>We present an algorithm for detecting human actions based upon a single given video example of such actions. The proposed method is unsupervised, does not require learning, segmentation, or motion estimation. The novel features employed in our method are based on space-time locally adaptive regression kernels. Our method is based on the dense computation of so-called space-time local regression kernels (i.e. local descriptors) from a query video, which measure the likeness of a voxel to its spatio-temporal surroundings. Salient features are then extracted from these descriptors using principal components analysis (PCA). These are efficiently compared against analogous features from the target video using a matrix generalization of the cosine similarity measure. The algorithm yields a scalar resemblance volume; each voxel indicating the like-lihood of similarity between the query video and all cubes in the target video. By employing non-parametric significance tests and non-maxima suppression, we accurately detect the presence and location of actions similar to the given query video. High performance is demonstrated on a challenging set of action data indicating successful detection of multiple complex actions even in the presence of fast motions.</description><identifier>ISSN: 1550-5499</identifier><identifier>ISBN: 9781424444205</identifier><identifier>ISBN: 1424444209</identifier><identifier>EISSN: 2380-7504</identifier><identifier>EISBN: 1424444195</identifier><identifier>EISBN: 9781424444199</identifier><identifier>DOI: 10.1109/ICCV.2009.5459433</identifier><language>eng</language><publisher>IEEE</publisher><subject>Computer vision ; Feature extraction ; Humans ; Kernel ; Motion detection ; Motion estimation ; Principal component analysis ; Spatiotemporal phenomena ; Testing ; Videoconference</subject><ispartof>2009 IEEE 12th International Conference on Computer Vision, 2009, p.1965-1970</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5459433$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5459433$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hae Jong Seo</creatorcontrib><creatorcontrib>Milanfar, Peyman</creatorcontrib><title>Detection of human actions from a single example</title><title>2009 IEEE 12th International Conference on Computer Vision</title><addtitle>ICCV</addtitle><description>We present an algorithm for detecting human actions based upon a single given video example of such actions. The proposed method is unsupervised, does not require learning, segmentation, or motion estimation. The novel features employed in our method are based on space-time locally adaptive regression kernels. Our method is based on the dense computation of so-called space-time local regression kernels (i.e. local descriptors) from a query video, which measure the likeness of a voxel to its spatio-temporal surroundings. Salient features are then extracted from these descriptors using principal components analysis (PCA). These are efficiently compared against analogous features from the target video using a matrix generalization of the cosine similarity measure. The algorithm yields a scalar resemblance volume; each voxel indicating the like-lihood of similarity between the query video and all cubes in the target video. By employing non-parametric significance tests and non-maxima suppression, we accurately detect the presence and location of actions similar to the given query video. High performance is demonstrated on a challenging set of action data indicating successful detection of multiple complex actions even in the presence of fast motions.</description><subject>Computer vision</subject><subject>Feature extraction</subject><subject>Humans</subject><subject>Kernel</subject><subject>Motion detection</subject><subject>Motion estimation</subject><subject>Principal component analysis</subject><subject>Spatiotemporal phenomena</subject><subject>Testing</subject><subject>Videoconference</subject><issn>1550-5499</issn><issn>2380-7504</issn><isbn>9781424444205</isbn><isbn>1424444209</isbn><isbn>1424444195</isbn><isbn>9781424444199</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj1tLw0AUhNcbmNb-APFl_0DSs5eT3fMosWqh0Bf1tWzSE43kUpII-u8Nmnn5ZhgYGCFuFSRKAa23WfaWaABK0CJZY87EQlltJynCcxFp4yF2CPZCrMj5udOAlyJSiBCjJboWi2H4BDCkfRoJeOCRi7HqWtmV8uOrCa0Mf3mQZd81Msihat9rlvwdmlPNN-KqDPXAq5lL8fq4ecme493-aZvd7-JKKz_GOTufH1XqUl8Y6_MApggYyGlIA8FReQWoNTJSoQw6mozTPDHkHoDNUtz971bMfDj1VRP6n8P83PwCd3BGfA</recordid><startdate>200909</startdate><enddate>200909</enddate><creator>Hae Jong Seo</creator><creator>Milanfar, Peyman</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>200909</creationdate><title>Detection of human actions from a single example</title><author>Hae Jong Seo ; Milanfar, Peyman</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i218t-be78bd16768c348ba03ca5a97206a90d18105225e59c13579e5972e79eab800e3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Computer vision</topic><topic>Feature extraction</topic><topic>Humans</topic><topic>Kernel</topic><topic>Motion detection</topic><topic>Motion estimation</topic><topic>Principal component analysis</topic><topic>Spatiotemporal phenomena</topic><topic>Testing</topic><topic>Videoconference</topic><toplevel>online_resources</toplevel><creatorcontrib>Hae Jong Seo</creatorcontrib><creatorcontrib>Milanfar, Peyman</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hae Jong Seo</au><au>Milanfar, Peyman</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Detection of human actions from a single example</atitle><btitle>2009 IEEE 12th International Conference on Computer Vision</btitle><stitle>ICCV</stitle><date>2009-09</date><risdate>2009</risdate><spage>1965</spage><epage>1970</epage><pages>1965-1970</pages><issn>1550-5499</issn><eissn>2380-7504</eissn><isbn>9781424444205</isbn><isbn>1424444209</isbn><eisbn>1424444195</eisbn><eisbn>9781424444199</eisbn><abstract>We present an algorithm for detecting human actions based upon a single given video example of such actions. The proposed method is unsupervised, does not require learning, segmentation, or motion estimation. The novel features employed in our method are based on space-time locally adaptive regression kernels. Our method is based on the dense computation of so-called space-time local regression kernels (i.e. local descriptors) from a query video, which measure the likeness of a voxel to its spatio-temporal surroundings. Salient features are then extracted from these descriptors using principal components analysis (PCA). These are efficiently compared against analogous features from the target video using a matrix generalization of the cosine similarity measure. The algorithm yields a scalar resemblance volume; each voxel indicating the like-lihood of similarity between the query video and all cubes in the target video. By employing non-parametric significance tests and non-maxima suppression, we accurately detect the presence and location of actions similar to the given query video. High performance is demonstrated on a challenging set of action data indicating successful detection of multiple complex actions even in the presence of fast motions.</abstract><pub>IEEE</pub><doi>10.1109/ICCV.2009.5459433</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1550-5499 |
ispartof | 2009 IEEE 12th International Conference on Computer Vision, 2009, p.1965-1970 |
issn | 1550-5499 2380-7504 |
language | eng |
recordid | cdi_ieee_primary_5459433 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Computer vision Feature extraction Humans Kernel Motion detection Motion estimation Principal component analysis Spatiotemporal phenomena Testing Videoconference |
title | Detection of human actions from a single example |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T20%3A35%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Detection%20of%20human%20actions%20from%20a%20single%20example&rft.btitle=2009%20IEEE%2012th%20International%20Conference%20on%20Computer%20Vision&rft.au=Hae%20Jong%20Seo&rft.date=2009-09&rft.spage=1965&rft.epage=1970&rft.pages=1965-1970&rft.issn=1550-5499&rft.eissn=2380-7504&rft.isbn=9781424444205&rft.isbn_list=1424444209&rft_id=info:doi/10.1109/ICCV.2009.5459433&rft_dat=%3Cieee_6IE%3E5459433%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424444195&rft.eisbn_list=9781424444199&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5459433&rfr_iscdi=true |