Detection of human actions from a single example

We present an algorithm for detecting human actions based upon a single given video example of such actions. The proposed method is unsupervised, does not require learning, segmentation, or motion estimation. The novel features employed in our method are based on space-time locally adaptive regressi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Hae Jong Seo, Milanfar, Peyman
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1970
container_issue
container_start_page 1965
container_title
container_volume
creator Hae Jong Seo
Milanfar, Peyman
description We present an algorithm for detecting human actions based upon a single given video example of such actions. The proposed method is unsupervised, does not require learning, segmentation, or motion estimation. The novel features employed in our method are based on space-time locally adaptive regression kernels. Our method is based on the dense computation of so-called space-time local regression kernels (i.e. local descriptors) from a query video, which measure the likeness of a voxel to its spatio-temporal surroundings. Salient features are then extracted from these descriptors using principal components analysis (PCA). These are efficiently compared against analogous features from the target video using a matrix generalization of the cosine similarity measure. The algorithm yields a scalar resemblance volume; each voxel indicating the like-lihood of similarity between the query video and all cubes in the target video. By employing non-parametric significance tests and non-maxima suppression, we accurately detect the presence and location of actions similar to the given query video. High performance is demonstrated on a challenging set of action data indicating successful detection of multiple complex actions even in the presence of fast motions.
doi_str_mv 10.1109/ICCV.2009.5459433
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5459433</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5459433</ieee_id><sourcerecordid>5459433</sourcerecordid><originalsourceid>FETCH-LOGICAL-i218t-be78bd16768c348ba03ca5a97206a90d18105225e59c13579e5972e79eab800e3</originalsourceid><addsrcrecordid>eNotj1tLw0AUhNcbmNb-APFl_0DSs5eT3fMosWqh0Bf1tWzSE43kUpII-u8Nmnn5ZhgYGCFuFSRKAa23WfaWaABK0CJZY87EQlltJynCcxFp4yF2CPZCrMj5udOAlyJSiBCjJboWi2H4BDCkfRoJeOCRi7HqWtmV8uOrCa0Mf3mQZd81Msihat9rlvwdmlPNN-KqDPXAq5lL8fq4ecme493-aZvd7-JKKz_GOTufH1XqUl8Y6_MApggYyGlIA8FReQWoNTJSoQw6mozTPDHkHoDNUtz971bMfDj1VRP6n8P83PwCd3BGfA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Detection of human actions from a single example</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Hae Jong Seo ; Milanfar, Peyman</creator><creatorcontrib>Hae Jong Seo ; Milanfar, Peyman</creatorcontrib><description>We present an algorithm for detecting human actions based upon a single given video example of such actions. The proposed method is unsupervised, does not require learning, segmentation, or motion estimation. The novel features employed in our method are based on space-time locally adaptive regression kernels. Our method is based on the dense computation of so-called space-time local regression kernels (i.e. local descriptors) from a query video, which measure the likeness of a voxel to its spatio-temporal surroundings. Salient features are then extracted from these descriptors using principal components analysis (PCA). These are efficiently compared against analogous features from the target video using a matrix generalization of the cosine similarity measure. The algorithm yields a scalar resemblance volume; each voxel indicating the like-lihood of similarity between the query video and all cubes in the target video. By employing non-parametric significance tests and non-maxima suppression, we accurately detect the presence and location of actions similar to the given query video. High performance is demonstrated on a challenging set of action data indicating successful detection of multiple complex actions even in the presence of fast motions.</description><identifier>ISSN: 1550-5499</identifier><identifier>ISBN: 9781424444205</identifier><identifier>ISBN: 1424444209</identifier><identifier>EISSN: 2380-7504</identifier><identifier>EISBN: 1424444195</identifier><identifier>EISBN: 9781424444199</identifier><identifier>DOI: 10.1109/ICCV.2009.5459433</identifier><language>eng</language><publisher>IEEE</publisher><subject>Computer vision ; Feature extraction ; Humans ; Kernel ; Motion detection ; Motion estimation ; Principal component analysis ; Spatiotemporal phenomena ; Testing ; Videoconference</subject><ispartof>2009 IEEE 12th International Conference on Computer Vision, 2009, p.1965-1970</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5459433$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5459433$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hae Jong Seo</creatorcontrib><creatorcontrib>Milanfar, Peyman</creatorcontrib><title>Detection of human actions from a single example</title><title>2009 IEEE 12th International Conference on Computer Vision</title><addtitle>ICCV</addtitle><description>We present an algorithm for detecting human actions based upon a single given video example of such actions. The proposed method is unsupervised, does not require learning, segmentation, or motion estimation. The novel features employed in our method are based on space-time locally adaptive regression kernels. Our method is based on the dense computation of so-called space-time local regression kernels (i.e. local descriptors) from a query video, which measure the likeness of a voxel to its spatio-temporal surroundings. Salient features are then extracted from these descriptors using principal components analysis (PCA). These are efficiently compared against analogous features from the target video using a matrix generalization of the cosine similarity measure. The algorithm yields a scalar resemblance volume; each voxel indicating the like-lihood of similarity between the query video and all cubes in the target video. By employing non-parametric significance tests and non-maxima suppression, we accurately detect the presence and location of actions similar to the given query video. High performance is demonstrated on a challenging set of action data indicating successful detection of multiple complex actions even in the presence of fast motions.</description><subject>Computer vision</subject><subject>Feature extraction</subject><subject>Humans</subject><subject>Kernel</subject><subject>Motion detection</subject><subject>Motion estimation</subject><subject>Principal component analysis</subject><subject>Spatiotemporal phenomena</subject><subject>Testing</subject><subject>Videoconference</subject><issn>1550-5499</issn><issn>2380-7504</issn><isbn>9781424444205</isbn><isbn>1424444209</isbn><isbn>1424444195</isbn><isbn>9781424444199</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj1tLw0AUhNcbmNb-APFl_0DSs5eT3fMosWqh0Bf1tWzSE43kUpII-u8Nmnn5ZhgYGCFuFSRKAa23WfaWaABK0CJZY87EQlltJynCcxFp4yF2CPZCrMj5udOAlyJSiBCjJboWi2H4BDCkfRoJeOCRi7HqWtmV8uOrCa0Mf3mQZd81Msihat9rlvwdmlPNN-KqDPXAq5lL8fq4ecme493-aZvd7-JKKz_GOTufH1XqUl8Y6_MApggYyGlIA8FReQWoNTJSoQw6mozTPDHkHoDNUtz971bMfDj1VRP6n8P83PwCd3BGfA</recordid><startdate>200909</startdate><enddate>200909</enddate><creator>Hae Jong Seo</creator><creator>Milanfar, Peyman</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>200909</creationdate><title>Detection of human actions from a single example</title><author>Hae Jong Seo ; Milanfar, Peyman</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i218t-be78bd16768c348ba03ca5a97206a90d18105225e59c13579e5972e79eab800e3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Computer vision</topic><topic>Feature extraction</topic><topic>Humans</topic><topic>Kernel</topic><topic>Motion detection</topic><topic>Motion estimation</topic><topic>Principal component analysis</topic><topic>Spatiotemporal phenomena</topic><topic>Testing</topic><topic>Videoconference</topic><toplevel>online_resources</toplevel><creatorcontrib>Hae Jong Seo</creatorcontrib><creatorcontrib>Milanfar, Peyman</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hae Jong Seo</au><au>Milanfar, Peyman</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Detection of human actions from a single example</atitle><btitle>2009 IEEE 12th International Conference on Computer Vision</btitle><stitle>ICCV</stitle><date>2009-09</date><risdate>2009</risdate><spage>1965</spage><epage>1970</epage><pages>1965-1970</pages><issn>1550-5499</issn><eissn>2380-7504</eissn><isbn>9781424444205</isbn><isbn>1424444209</isbn><eisbn>1424444195</eisbn><eisbn>9781424444199</eisbn><abstract>We present an algorithm for detecting human actions based upon a single given video example of such actions. The proposed method is unsupervised, does not require learning, segmentation, or motion estimation. The novel features employed in our method are based on space-time locally adaptive regression kernels. Our method is based on the dense computation of so-called space-time local regression kernels (i.e. local descriptors) from a query video, which measure the likeness of a voxel to its spatio-temporal surroundings. Salient features are then extracted from these descriptors using principal components analysis (PCA). These are efficiently compared against analogous features from the target video using a matrix generalization of the cosine similarity measure. The algorithm yields a scalar resemblance volume; each voxel indicating the like-lihood of similarity between the query video and all cubes in the target video. By employing non-parametric significance tests and non-maxima suppression, we accurately detect the presence and location of actions similar to the given query video. High performance is demonstrated on a challenging set of action data indicating successful detection of multiple complex actions even in the presence of fast motions.</abstract><pub>IEEE</pub><doi>10.1109/ICCV.2009.5459433</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1550-5499
ispartof 2009 IEEE 12th International Conference on Computer Vision, 2009, p.1965-1970
issn 1550-5499
2380-7504
language eng
recordid cdi_ieee_primary_5459433
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Computer vision
Feature extraction
Humans
Kernel
Motion detection
Motion estimation
Principal component analysis
Spatiotemporal phenomena
Testing
Videoconference
title Detection of human actions from a single example
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T20%3A35%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Detection%20of%20human%20actions%20from%20a%20single%20example&rft.btitle=2009%20IEEE%2012th%20International%20Conference%20on%20Computer%20Vision&rft.au=Hae%20Jong%20Seo&rft.date=2009-09&rft.spage=1965&rft.epage=1970&rft.pages=1965-1970&rft.issn=1550-5499&rft.eissn=2380-7504&rft.isbn=9781424444205&rft.isbn_list=1424444209&rft_id=info:doi/10.1109/ICCV.2009.5459433&rft_dat=%3Cieee_6IE%3E5459433%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424444195&rft.eisbn_list=9781424444199&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5459433&rfr_iscdi=true