Structure- and motion-adaptive regularization for high accuracy optic flow
The accurate estimation of motion in image sequences is of central importance to numerous computer vision applications. Most competitive algorithms compute flow fields by minimizing an energy made of a data and a regularity term. To date, the best performing methods rely on rather simple purely geom...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1668 |
---|---|
container_issue | |
container_start_page | 1663 |
container_title | |
container_volume | |
creator | Wedel, Andreas Cremers, Daniel Pock, Thomas Bischof, Horst |
description | The accurate estimation of motion in image sequences is of central importance to numerous computer vision applications. Most competitive algorithms compute flow fields by minimizing an energy made of a data and a regularity term. To date, the best performing methods rely on rather simple purely geometric regularizes favoring smooth motion. In this paper, we revisit regularization and show that appropriate adaptive regularization substantially improves the accuracy of estimated motion fields. In particular, we systematically evaluate regularizes which adoptively favor rigid body motion (if supported by the image data) and motion field discontinuities that coincide with discontinuities of the image structure. The proposed algorithm relies on sequential convex optimization, is real-time capable and outperforms all previously published algorithms by more than one average rank on the Middlebury optic flow benchmark. |
doi_str_mv | 10.1109/ICCV.2009.5459375 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5459375</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5459375</ieee_id><sourcerecordid>5459375</sourcerecordid><originalsourceid>FETCH-LOGICAL-c289t-55148094e8b8ed66511e4868ad0897a359542d6ee28c9bd813596dbfb9062c0a3</originalsourceid><addsrcrecordid>eNotkMtOwzAURM1LIi39AMTGP-Bw7fg6vksU8SiqxILHtnJspw1qm8pNQOXrKaKzGenMaBbD2LWEXEqg22lVfeQKgHLUSEWJJ2wktdIHScJTlqnCgigR9BmbUGmPmQI8Z5lEBIGa6JKNdrtPgIKUNRl7fu3T4PshRcHdJvB117fdRrjgtn37FXmKi2HlUvvj_jhvusSX7WLJnfdDcn7Pu0PP82bVfV-xi8atdnFy9DF7f7h_q57E7OVxWt3NhFeWeoEotQXS0dY2BmNQyqitsS6ApdIVSKhVMDEq66kOVh6ICXVTExjlwRVjdvO_28YY59vUrl3az4-fFL8TQ1ES</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Structure- and motion-adaptive regularization for high accuracy optic flow</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Wedel, Andreas ; Cremers, Daniel ; Pock, Thomas ; Bischof, Horst</creator><creatorcontrib>Wedel, Andreas ; Cremers, Daniel ; Pock, Thomas ; Bischof, Horst</creatorcontrib><description>The accurate estimation of motion in image sequences is of central importance to numerous computer vision applications. Most competitive algorithms compute flow fields by minimizing an energy made of a data and a regularity term. To date, the best performing methods rely on rather simple purely geometric regularizes favoring smooth motion. In this paper, we revisit regularization and show that appropriate adaptive regularization substantially improves the accuracy of estimated motion fields. In particular, we systematically evaluate regularizes which adoptively favor rigid body motion (if supported by the image data) and motion field discontinuities that coincide with discontinuities of the image structure. The proposed algorithm relies on sequential convex optimization, is real-time capable and outperforms all previously published algorithms by more than one average rank on the Middlebury optic flow benchmark.</description><identifier>ISSN: 1550-5499</identifier><identifier>ISBN: 9781424444205</identifier><identifier>ISBN: 1424444209</identifier><identifier>EISSN: 2380-7504</identifier><identifier>EISBN: 1424444195</identifier><identifier>EISBN: 9781424444199</identifier><identifier>DOI: 10.1109/ICCV.2009.5459375</identifier><language>eng</language><publisher>IEEE</publisher><subject>Computer vision ; Image motion analysis</subject><ispartof>2009 IEEE 12th International Conference on Computer Vision, 2009, p.1663-1668</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c289t-55148094e8b8ed66511e4868ad0897a359542d6ee28c9bd813596dbfb9062c0a3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5459375$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5459375$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wedel, Andreas</creatorcontrib><creatorcontrib>Cremers, Daniel</creatorcontrib><creatorcontrib>Pock, Thomas</creatorcontrib><creatorcontrib>Bischof, Horst</creatorcontrib><title>Structure- and motion-adaptive regularization for high accuracy optic flow</title><title>2009 IEEE 12th International Conference on Computer Vision</title><addtitle>ICCV</addtitle><description>The accurate estimation of motion in image sequences is of central importance to numerous computer vision applications. Most competitive algorithms compute flow fields by minimizing an energy made of a data and a regularity term. To date, the best performing methods rely on rather simple purely geometric regularizes favoring smooth motion. In this paper, we revisit regularization and show that appropriate adaptive regularization substantially improves the accuracy of estimated motion fields. In particular, we systematically evaluate regularizes which adoptively favor rigid body motion (if supported by the image data) and motion field discontinuities that coincide with discontinuities of the image structure. The proposed algorithm relies on sequential convex optimization, is real-time capable and outperforms all previously published algorithms by more than one average rank on the Middlebury optic flow benchmark.</description><subject>Computer vision</subject><subject>Image motion analysis</subject><issn>1550-5499</issn><issn>2380-7504</issn><isbn>9781424444205</isbn><isbn>1424444209</isbn><isbn>1424444195</isbn><isbn>9781424444199</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotkMtOwzAURM1LIi39AMTGP-Bw7fg6vksU8SiqxILHtnJspw1qm8pNQOXrKaKzGenMaBbD2LWEXEqg22lVfeQKgHLUSEWJJ2wktdIHScJTlqnCgigR9BmbUGmPmQI8Z5lEBIGa6JKNdrtPgIKUNRl7fu3T4PshRcHdJvB117fdRrjgtn37FXmKi2HlUvvj_jhvusSX7WLJnfdDcn7Pu0PP82bVfV-xi8atdnFy9DF7f7h_q57E7OVxWt3NhFeWeoEotQXS0dY2BmNQyqitsS6ApdIVSKhVMDEq66kOVh6ICXVTExjlwRVjdvO_28YY59vUrl3az4-fFL8TQ1ES</recordid><startdate>200909</startdate><enddate>200909</enddate><creator>Wedel, Andreas</creator><creator>Cremers, Daniel</creator><creator>Pock, Thomas</creator><creator>Bischof, Horst</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>200909</creationdate><title>Structure- and motion-adaptive regularization for high accuracy optic flow</title><author>Wedel, Andreas ; Cremers, Daniel ; Pock, Thomas ; Bischof, Horst</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c289t-55148094e8b8ed66511e4868ad0897a359542d6ee28c9bd813596dbfb9062c0a3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Computer vision</topic><topic>Image motion analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Wedel, Andreas</creatorcontrib><creatorcontrib>Cremers, Daniel</creatorcontrib><creatorcontrib>Pock, Thomas</creatorcontrib><creatorcontrib>Bischof, Horst</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wedel, Andreas</au><au>Cremers, Daniel</au><au>Pock, Thomas</au><au>Bischof, Horst</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Structure- and motion-adaptive regularization for high accuracy optic flow</atitle><btitle>2009 IEEE 12th International Conference on Computer Vision</btitle><stitle>ICCV</stitle><date>2009-09</date><risdate>2009</risdate><spage>1663</spage><epage>1668</epage><pages>1663-1668</pages><issn>1550-5499</issn><eissn>2380-7504</eissn><isbn>9781424444205</isbn><isbn>1424444209</isbn><eisbn>1424444195</eisbn><eisbn>9781424444199</eisbn><abstract>The accurate estimation of motion in image sequences is of central importance to numerous computer vision applications. Most competitive algorithms compute flow fields by minimizing an energy made of a data and a regularity term. To date, the best performing methods rely on rather simple purely geometric regularizes favoring smooth motion. In this paper, we revisit regularization and show that appropriate adaptive regularization substantially improves the accuracy of estimated motion fields. In particular, we systematically evaluate regularizes which adoptively favor rigid body motion (if supported by the image data) and motion field discontinuities that coincide with discontinuities of the image structure. The proposed algorithm relies on sequential convex optimization, is real-time capable and outperforms all previously published algorithms by more than one average rank on the Middlebury optic flow benchmark.</abstract><pub>IEEE</pub><doi>10.1109/ICCV.2009.5459375</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1550-5499 |
ispartof | 2009 IEEE 12th International Conference on Computer Vision, 2009, p.1663-1668 |
issn | 1550-5499 2380-7504 |
language | eng |
recordid | cdi_ieee_primary_5459375 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Computer vision Image motion analysis |
title | Structure- and motion-adaptive regularization for high accuracy optic flow |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T08%3A04%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Structure-%20and%20motion-adaptive%20regularization%20for%20high%20accuracy%20optic%20flow&rft.btitle=2009%20IEEE%2012th%20International%20Conference%20on%20Computer%20Vision&rft.au=Wedel,%20Andreas&rft.date=2009-09&rft.spage=1663&rft.epage=1668&rft.pages=1663-1668&rft.issn=1550-5499&rft.eissn=2380-7504&rft.isbn=9781424444205&rft.isbn_list=1424444209&rft_id=info:doi/10.1109/ICCV.2009.5459375&rft_dat=%3Cieee_6IE%3E5459375%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424444195&rft.eisbn_list=9781424444199&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5459375&rfr_iscdi=true |