Structure- and motion-adaptive regularization for high accuracy optic flow

The accurate estimation of motion in image sequences is of central importance to numerous computer vision applications. Most competitive algorithms compute flow fields by minimizing an energy made of a data and a regularity term. To date, the best performing methods rely on rather simple purely geom...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Wedel, Andreas, Cremers, Daniel, Pock, Thomas, Bischof, Horst
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1668
container_issue
container_start_page 1663
container_title
container_volume
creator Wedel, Andreas
Cremers, Daniel
Pock, Thomas
Bischof, Horst
description The accurate estimation of motion in image sequences is of central importance to numerous computer vision applications. Most competitive algorithms compute flow fields by minimizing an energy made of a data and a regularity term. To date, the best performing methods rely on rather simple purely geometric regularizes favoring smooth motion. In this paper, we revisit regularization and show that appropriate adaptive regularization substantially improves the accuracy of estimated motion fields. In particular, we systematically evaluate regularizes which adoptively favor rigid body motion (if supported by the image data) and motion field discontinuities that coincide with discontinuities of the image structure. The proposed algorithm relies on sequential convex optimization, is real-time capable and outperforms all previously published algorithms by more than one average rank on the Middlebury optic flow benchmark.
doi_str_mv 10.1109/ICCV.2009.5459375
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5459375</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5459375</ieee_id><sourcerecordid>5459375</sourcerecordid><originalsourceid>FETCH-LOGICAL-c289t-55148094e8b8ed66511e4868ad0897a359542d6ee28c9bd813596dbfb9062c0a3</originalsourceid><addsrcrecordid>eNotkMtOwzAURM1LIi39AMTGP-Bw7fg6vksU8SiqxILHtnJspw1qm8pNQOXrKaKzGenMaBbD2LWEXEqg22lVfeQKgHLUSEWJJ2wktdIHScJTlqnCgigR9BmbUGmPmQI8Z5lEBIGa6JKNdrtPgIKUNRl7fu3T4PshRcHdJvB117fdRrjgtn37FXmKi2HlUvvj_jhvusSX7WLJnfdDcn7Pu0PP82bVfV-xi8atdnFy9DF7f7h_q57E7OVxWt3NhFeWeoEotQXS0dY2BmNQyqitsS6ApdIVSKhVMDEq66kOVh6ICXVTExjlwRVjdvO_28YY59vUrl3az4-fFL8TQ1ES</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Structure- and motion-adaptive regularization for high accuracy optic flow</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Wedel, Andreas ; Cremers, Daniel ; Pock, Thomas ; Bischof, Horst</creator><creatorcontrib>Wedel, Andreas ; Cremers, Daniel ; Pock, Thomas ; Bischof, Horst</creatorcontrib><description>The accurate estimation of motion in image sequences is of central importance to numerous computer vision applications. Most competitive algorithms compute flow fields by minimizing an energy made of a data and a regularity term. To date, the best performing methods rely on rather simple purely geometric regularizes favoring smooth motion. In this paper, we revisit regularization and show that appropriate adaptive regularization substantially improves the accuracy of estimated motion fields. In particular, we systematically evaluate regularizes which adoptively favor rigid body motion (if supported by the image data) and motion field discontinuities that coincide with discontinuities of the image structure. The proposed algorithm relies on sequential convex optimization, is real-time capable and outperforms all previously published algorithms by more than one average rank on the Middlebury optic flow benchmark.</description><identifier>ISSN: 1550-5499</identifier><identifier>ISBN: 9781424444205</identifier><identifier>ISBN: 1424444209</identifier><identifier>EISSN: 2380-7504</identifier><identifier>EISBN: 1424444195</identifier><identifier>EISBN: 9781424444199</identifier><identifier>DOI: 10.1109/ICCV.2009.5459375</identifier><language>eng</language><publisher>IEEE</publisher><subject>Computer vision ; Image motion analysis</subject><ispartof>2009 IEEE 12th International Conference on Computer Vision, 2009, p.1663-1668</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c289t-55148094e8b8ed66511e4868ad0897a359542d6ee28c9bd813596dbfb9062c0a3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5459375$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5459375$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wedel, Andreas</creatorcontrib><creatorcontrib>Cremers, Daniel</creatorcontrib><creatorcontrib>Pock, Thomas</creatorcontrib><creatorcontrib>Bischof, Horst</creatorcontrib><title>Structure- and motion-adaptive regularization for high accuracy optic flow</title><title>2009 IEEE 12th International Conference on Computer Vision</title><addtitle>ICCV</addtitle><description>The accurate estimation of motion in image sequences is of central importance to numerous computer vision applications. Most competitive algorithms compute flow fields by minimizing an energy made of a data and a regularity term. To date, the best performing methods rely on rather simple purely geometric regularizes favoring smooth motion. In this paper, we revisit regularization and show that appropriate adaptive regularization substantially improves the accuracy of estimated motion fields. In particular, we systematically evaluate regularizes which adoptively favor rigid body motion (if supported by the image data) and motion field discontinuities that coincide with discontinuities of the image structure. The proposed algorithm relies on sequential convex optimization, is real-time capable and outperforms all previously published algorithms by more than one average rank on the Middlebury optic flow benchmark.</description><subject>Computer vision</subject><subject>Image motion analysis</subject><issn>1550-5499</issn><issn>2380-7504</issn><isbn>9781424444205</isbn><isbn>1424444209</isbn><isbn>1424444195</isbn><isbn>9781424444199</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotkMtOwzAURM1LIi39AMTGP-Bw7fg6vksU8SiqxILHtnJspw1qm8pNQOXrKaKzGenMaBbD2LWEXEqg22lVfeQKgHLUSEWJJ2wktdIHScJTlqnCgigR9BmbUGmPmQI8Z5lEBIGa6JKNdrtPgIKUNRl7fu3T4PshRcHdJvB117fdRrjgtn37FXmKi2HlUvvj_jhvusSX7WLJnfdDcn7Pu0PP82bVfV-xi8atdnFy9DF7f7h_q57E7OVxWt3NhFeWeoEotQXS0dY2BmNQyqitsS6ApdIVSKhVMDEq66kOVh6ICXVTExjlwRVjdvO_28YY59vUrl3az4-fFL8TQ1ES</recordid><startdate>200909</startdate><enddate>200909</enddate><creator>Wedel, Andreas</creator><creator>Cremers, Daniel</creator><creator>Pock, Thomas</creator><creator>Bischof, Horst</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>200909</creationdate><title>Structure- and motion-adaptive regularization for high accuracy optic flow</title><author>Wedel, Andreas ; Cremers, Daniel ; Pock, Thomas ; Bischof, Horst</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c289t-55148094e8b8ed66511e4868ad0897a359542d6ee28c9bd813596dbfb9062c0a3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Computer vision</topic><topic>Image motion analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Wedel, Andreas</creatorcontrib><creatorcontrib>Cremers, Daniel</creatorcontrib><creatorcontrib>Pock, Thomas</creatorcontrib><creatorcontrib>Bischof, Horst</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wedel, Andreas</au><au>Cremers, Daniel</au><au>Pock, Thomas</au><au>Bischof, Horst</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Structure- and motion-adaptive regularization for high accuracy optic flow</atitle><btitle>2009 IEEE 12th International Conference on Computer Vision</btitle><stitle>ICCV</stitle><date>2009-09</date><risdate>2009</risdate><spage>1663</spage><epage>1668</epage><pages>1663-1668</pages><issn>1550-5499</issn><eissn>2380-7504</eissn><isbn>9781424444205</isbn><isbn>1424444209</isbn><eisbn>1424444195</eisbn><eisbn>9781424444199</eisbn><abstract>The accurate estimation of motion in image sequences is of central importance to numerous computer vision applications. Most competitive algorithms compute flow fields by minimizing an energy made of a data and a regularity term. To date, the best performing methods rely on rather simple purely geometric regularizes favoring smooth motion. In this paper, we revisit regularization and show that appropriate adaptive regularization substantially improves the accuracy of estimated motion fields. In particular, we systematically evaluate regularizes which adoptively favor rigid body motion (if supported by the image data) and motion field discontinuities that coincide with discontinuities of the image structure. The proposed algorithm relies on sequential convex optimization, is real-time capable and outperforms all previously published algorithms by more than one average rank on the Middlebury optic flow benchmark.</abstract><pub>IEEE</pub><doi>10.1109/ICCV.2009.5459375</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1550-5499
ispartof 2009 IEEE 12th International Conference on Computer Vision, 2009, p.1663-1668
issn 1550-5499
2380-7504
language eng
recordid cdi_ieee_primary_5459375
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Computer vision
Image motion analysis
title Structure- and motion-adaptive regularization for high accuracy optic flow
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T08%3A04%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Structure-%20and%20motion-adaptive%20regularization%20for%20high%20accuracy%20optic%20flow&rft.btitle=2009%20IEEE%2012th%20International%20Conference%20on%20Computer%20Vision&rft.au=Wedel,%20Andreas&rft.date=2009-09&rft.spage=1663&rft.epage=1668&rft.pages=1663-1668&rft.issn=1550-5499&rft.eissn=2380-7504&rft.isbn=9781424444205&rft.isbn_list=1424444209&rft_id=info:doi/10.1109/ICCV.2009.5459375&rft_dat=%3Cieee_6IE%3E5459375%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424444195&rft.eisbn_list=9781424444199&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5459375&rfr_iscdi=true