Compact signatures for high-speed interest point description and matching
Prominent feature point descriptors such as SIFT and SURF allow reliable real-time matching but at a computational cost that limits the number of points that can be handled on PCs, and even more on less powerful mobile devices. A recently proposed technique that relies on statistical classification...
Gespeichert in:
Hauptverfasser: | , , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 364 |
---|---|
container_issue | |
container_start_page | 357 |
container_title | |
container_volume | |
creator | Calonder, Michael Lepetit, Vincent Fua, Pascal Konolige, Kurt Bowman, James Mihelich, Patrick |
description | Prominent feature point descriptors such as SIFT and SURF allow reliable real-time matching but at a computational cost that limits the number of points that can be handled on PCs, and even more on less powerful mobile devices. A recently proposed technique that relies on statistical classification to compute signatures has the potential to be much faster but at the cost of using very large amounts of memory, which makes it impractical for implementation on low-memory devices. In this paper, we show that we can exploit the sparseness of these signatures to compact them, speed up the computation, and drastically reduce memory usage. We base our approach on Compressive Sensing theory. We also highlight its effectiveness by incorporating it into two very different SLAM packages and demonstrating substantial performance increases. |
doi_str_mv | 10.1109/ICCV.2009.5459272 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5459272</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5459272</ieee_id><sourcerecordid>5459272</sourcerecordid><originalsourceid>FETCH-LOGICAL-i284t-a6217126a33b2e822255b3eebd9aa65fd66e4a9a7815be48273fe2b3da1e61bc3</originalsourceid><addsrcrecordid>eNotUMlOwzAUNJtEW_oBiIt_IMF-XmIfUUShUiUuwLV6SV5aI7IoNgf-nkhkLjOakUajYexeilxK4R_3ZfmZgxA-N9p4KOCCraUGPUN6c8lWoJzICiP0Fdv6wi0ZCHPNVtIYkRnt_S1bx_glhPLg7Irty6EbsU48hlOP6WeiyNth4udwOmdxJGp46BPNduLjMEveUKynMKYw9Bz7hneY6nPoT3fspsXvSNuFN-xj9_xevmaHt5d9-XTIAjidMrQgCwkWlaqAHAAYUymiqvGI1rSNtaTR47zfVKQdFKolqFSDkqysarVhD_-9gYiO4xQ6nH6PyyXqD-_pUas</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Compact signatures for high-speed interest point description and matching</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Calonder, Michael ; Lepetit, Vincent ; Fua, Pascal ; Konolige, Kurt ; Bowman, James ; Mihelich, Patrick</creator><creatorcontrib>Calonder, Michael ; Lepetit, Vincent ; Fua, Pascal ; Konolige, Kurt ; Bowman, James ; Mihelich, Patrick</creatorcontrib><description>Prominent feature point descriptors such as SIFT and SURF allow reliable real-time matching but at a computational cost that limits the number of points that can be handled on PCs, and even more on less powerful mobile devices. A recently proposed technique that relies on statistical classification to compute signatures has the potential to be much faster but at the cost of using very large amounts of memory, which makes it impractical for implementation on low-memory devices. In this paper, we show that we can exploit the sparseness of these signatures to compact them, speed up the computation, and drastically reduce memory usage. We base our approach on Compressive Sensing theory. We also highlight its effectiveness by incorporating it into two very different SLAM packages and demonstrating substantial performance increases.</description><identifier>ISSN: 1550-5499</identifier><identifier>ISBN: 9781424444205</identifier><identifier>ISBN: 1424444209</identifier><identifier>EISSN: 2380-7504</identifier><identifier>EISBN: 1424444195</identifier><identifier>EISBN: 9781424444199</identifier><identifier>DOI: 10.1109/ICCV.2009.5459272</identifier><language>eng</language><publisher>IEEE</publisher><subject>Computational efficiency ; Costs ; Distributed computing ; Handheld computers ; Mobile computing ; Packaging ; Personal communication networks ; Principal component analysis ; Simultaneous localization and mapping ; Sparse matrices</subject><ispartof>2009 IEEE 12th International Conference on Computer Vision, 2009, p.357-364</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5459272$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2057,27924,54919</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5459272$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Calonder, Michael</creatorcontrib><creatorcontrib>Lepetit, Vincent</creatorcontrib><creatorcontrib>Fua, Pascal</creatorcontrib><creatorcontrib>Konolige, Kurt</creatorcontrib><creatorcontrib>Bowman, James</creatorcontrib><creatorcontrib>Mihelich, Patrick</creatorcontrib><title>Compact signatures for high-speed interest point description and matching</title><title>2009 IEEE 12th International Conference on Computer Vision</title><addtitle>ICCV</addtitle><description>Prominent feature point descriptors such as SIFT and SURF allow reliable real-time matching but at a computational cost that limits the number of points that can be handled on PCs, and even more on less powerful mobile devices. A recently proposed technique that relies on statistical classification to compute signatures has the potential to be much faster but at the cost of using very large amounts of memory, which makes it impractical for implementation on low-memory devices. In this paper, we show that we can exploit the sparseness of these signatures to compact them, speed up the computation, and drastically reduce memory usage. We base our approach on Compressive Sensing theory. We also highlight its effectiveness by incorporating it into two very different SLAM packages and demonstrating substantial performance increases.</description><subject>Computational efficiency</subject><subject>Costs</subject><subject>Distributed computing</subject><subject>Handheld computers</subject><subject>Mobile computing</subject><subject>Packaging</subject><subject>Personal communication networks</subject><subject>Principal component analysis</subject><subject>Simultaneous localization and mapping</subject><subject>Sparse matrices</subject><issn>1550-5499</issn><issn>2380-7504</issn><isbn>9781424444205</isbn><isbn>1424444209</isbn><isbn>1424444195</isbn><isbn>9781424444199</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotUMlOwzAUNJtEW_oBiIt_IMF-XmIfUUShUiUuwLV6SV5aI7IoNgf-nkhkLjOakUajYexeilxK4R_3ZfmZgxA-N9p4KOCCraUGPUN6c8lWoJzICiP0Fdv6wi0ZCHPNVtIYkRnt_S1bx_glhPLg7Irty6EbsU48hlOP6WeiyNth4udwOmdxJGp46BPNduLjMEveUKynMKYw9Bz7hneY6nPoT3fspsXvSNuFN-xj9_xevmaHt5d9-XTIAjidMrQgCwkWlaqAHAAYUymiqvGI1rSNtaTR47zfVKQdFKolqFSDkqysarVhD_-9gYiO4xQ6nH6PyyXqD-_pUas</recordid><startdate>200909</startdate><enddate>200909</enddate><creator>Calonder, Michael</creator><creator>Lepetit, Vincent</creator><creator>Fua, Pascal</creator><creator>Konolige, Kurt</creator><creator>Bowman, James</creator><creator>Mihelich, Patrick</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>200909</creationdate><title>Compact signatures for high-speed interest point description and matching</title><author>Calonder, Michael ; Lepetit, Vincent ; Fua, Pascal ; Konolige, Kurt ; Bowman, James ; Mihelich, Patrick</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i284t-a6217126a33b2e822255b3eebd9aa65fd66e4a9a7815be48273fe2b3da1e61bc3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Computational efficiency</topic><topic>Costs</topic><topic>Distributed computing</topic><topic>Handheld computers</topic><topic>Mobile computing</topic><topic>Packaging</topic><topic>Personal communication networks</topic><topic>Principal component analysis</topic><topic>Simultaneous localization and mapping</topic><topic>Sparse matrices</topic><toplevel>online_resources</toplevel><creatorcontrib>Calonder, Michael</creatorcontrib><creatorcontrib>Lepetit, Vincent</creatorcontrib><creatorcontrib>Fua, Pascal</creatorcontrib><creatorcontrib>Konolige, Kurt</creatorcontrib><creatorcontrib>Bowman, James</creatorcontrib><creatorcontrib>Mihelich, Patrick</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Calonder, Michael</au><au>Lepetit, Vincent</au><au>Fua, Pascal</au><au>Konolige, Kurt</au><au>Bowman, James</au><au>Mihelich, Patrick</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Compact signatures for high-speed interest point description and matching</atitle><btitle>2009 IEEE 12th International Conference on Computer Vision</btitle><stitle>ICCV</stitle><date>2009-09</date><risdate>2009</risdate><spage>357</spage><epage>364</epage><pages>357-364</pages><issn>1550-5499</issn><eissn>2380-7504</eissn><isbn>9781424444205</isbn><isbn>1424444209</isbn><eisbn>1424444195</eisbn><eisbn>9781424444199</eisbn><abstract>Prominent feature point descriptors such as SIFT and SURF allow reliable real-time matching but at a computational cost that limits the number of points that can be handled on PCs, and even more on less powerful mobile devices. A recently proposed technique that relies on statistical classification to compute signatures has the potential to be much faster but at the cost of using very large amounts of memory, which makes it impractical for implementation on low-memory devices. In this paper, we show that we can exploit the sparseness of these signatures to compact them, speed up the computation, and drastically reduce memory usage. We base our approach on Compressive Sensing theory. We also highlight its effectiveness by incorporating it into two very different SLAM packages and demonstrating substantial performance increases.</abstract><pub>IEEE</pub><doi>10.1109/ICCV.2009.5459272</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1550-5499 |
ispartof | 2009 IEEE 12th International Conference on Computer Vision, 2009, p.357-364 |
issn | 1550-5499 2380-7504 |
language | eng |
recordid | cdi_ieee_primary_5459272 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Computational efficiency Costs Distributed computing Handheld computers Mobile computing Packaging Personal communication networks Principal component analysis Simultaneous localization and mapping Sparse matrices |
title | Compact signatures for high-speed interest point description and matching |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T07%3A36%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Compact%20signatures%20for%20high-speed%20interest%20point%20description%20and%20matching&rft.btitle=2009%20IEEE%2012th%20International%20Conference%20on%20Computer%20Vision&rft.au=Calonder,%20Michael&rft.date=2009-09&rft.spage=357&rft.epage=364&rft.pages=357-364&rft.issn=1550-5499&rft.eissn=2380-7504&rft.isbn=9781424444205&rft.isbn_list=1424444209&rft_id=info:doi/10.1109/ICCV.2009.5459272&rft_dat=%3Cieee_6IE%3E5459272%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424444195&rft.eisbn_list=9781424444199&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5459272&rfr_iscdi=true |