Compact signatures for high-speed interest point description and matching

Prominent feature point descriptors such as SIFT and SURF allow reliable real-time matching but at a computational cost that limits the number of points that can be handled on PCs, and even more on less powerful mobile devices. A recently proposed technique that relies on statistical classification...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Calonder, Michael, Lepetit, Vincent, Fua, Pascal, Konolige, Kurt, Bowman, James, Mihelich, Patrick
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 364
container_issue
container_start_page 357
container_title
container_volume
creator Calonder, Michael
Lepetit, Vincent
Fua, Pascal
Konolige, Kurt
Bowman, James
Mihelich, Patrick
description Prominent feature point descriptors such as SIFT and SURF allow reliable real-time matching but at a computational cost that limits the number of points that can be handled on PCs, and even more on less powerful mobile devices. A recently proposed technique that relies on statistical classification to compute signatures has the potential to be much faster but at the cost of using very large amounts of memory, which makes it impractical for implementation on low-memory devices. In this paper, we show that we can exploit the sparseness of these signatures to compact them, speed up the computation, and drastically reduce memory usage. We base our approach on Compressive Sensing theory. We also highlight its effectiveness by incorporating it into two very different SLAM packages and demonstrating substantial performance increases.
doi_str_mv 10.1109/ICCV.2009.5459272
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5459272</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5459272</ieee_id><sourcerecordid>5459272</sourcerecordid><originalsourceid>FETCH-LOGICAL-i284t-a6217126a33b2e822255b3eebd9aa65fd66e4a9a7815be48273fe2b3da1e61bc3</originalsourceid><addsrcrecordid>eNotUMlOwzAUNJtEW_oBiIt_IMF-XmIfUUShUiUuwLV6SV5aI7IoNgf-nkhkLjOakUajYexeilxK4R_3ZfmZgxA-N9p4KOCCraUGPUN6c8lWoJzICiP0Fdv6wi0ZCHPNVtIYkRnt_S1bx_glhPLg7Irty6EbsU48hlOP6WeiyNth4udwOmdxJGp46BPNduLjMEveUKynMKYw9Bz7hneY6nPoT3fspsXvSNuFN-xj9_xevmaHt5d9-XTIAjidMrQgCwkWlaqAHAAYUymiqvGI1rSNtaTR47zfVKQdFKolqFSDkqysarVhD_-9gYiO4xQ6nH6PyyXqD-_pUas</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Compact signatures for high-speed interest point description and matching</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Calonder, Michael ; Lepetit, Vincent ; Fua, Pascal ; Konolige, Kurt ; Bowman, James ; Mihelich, Patrick</creator><creatorcontrib>Calonder, Michael ; Lepetit, Vincent ; Fua, Pascal ; Konolige, Kurt ; Bowman, James ; Mihelich, Patrick</creatorcontrib><description>Prominent feature point descriptors such as SIFT and SURF allow reliable real-time matching but at a computational cost that limits the number of points that can be handled on PCs, and even more on less powerful mobile devices. A recently proposed technique that relies on statistical classification to compute signatures has the potential to be much faster but at the cost of using very large amounts of memory, which makes it impractical for implementation on low-memory devices. In this paper, we show that we can exploit the sparseness of these signatures to compact them, speed up the computation, and drastically reduce memory usage. We base our approach on Compressive Sensing theory. We also highlight its effectiveness by incorporating it into two very different SLAM packages and demonstrating substantial performance increases.</description><identifier>ISSN: 1550-5499</identifier><identifier>ISBN: 9781424444205</identifier><identifier>ISBN: 1424444209</identifier><identifier>EISSN: 2380-7504</identifier><identifier>EISBN: 1424444195</identifier><identifier>EISBN: 9781424444199</identifier><identifier>DOI: 10.1109/ICCV.2009.5459272</identifier><language>eng</language><publisher>IEEE</publisher><subject>Computational efficiency ; Costs ; Distributed computing ; Handheld computers ; Mobile computing ; Packaging ; Personal communication networks ; Principal component analysis ; Simultaneous localization and mapping ; Sparse matrices</subject><ispartof>2009 IEEE 12th International Conference on Computer Vision, 2009, p.357-364</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5459272$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2057,27924,54919</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5459272$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Calonder, Michael</creatorcontrib><creatorcontrib>Lepetit, Vincent</creatorcontrib><creatorcontrib>Fua, Pascal</creatorcontrib><creatorcontrib>Konolige, Kurt</creatorcontrib><creatorcontrib>Bowman, James</creatorcontrib><creatorcontrib>Mihelich, Patrick</creatorcontrib><title>Compact signatures for high-speed interest point description and matching</title><title>2009 IEEE 12th International Conference on Computer Vision</title><addtitle>ICCV</addtitle><description>Prominent feature point descriptors such as SIFT and SURF allow reliable real-time matching but at a computational cost that limits the number of points that can be handled on PCs, and even more on less powerful mobile devices. A recently proposed technique that relies on statistical classification to compute signatures has the potential to be much faster but at the cost of using very large amounts of memory, which makes it impractical for implementation on low-memory devices. In this paper, we show that we can exploit the sparseness of these signatures to compact them, speed up the computation, and drastically reduce memory usage. We base our approach on Compressive Sensing theory. We also highlight its effectiveness by incorporating it into two very different SLAM packages and demonstrating substantial performance increases.</description><subject>Computational efficiency</subject><subject>Costs</subject><subject>Distributed computing</subject><subject>Handheld computers</subject><subject>Mobile computing</subject><subject>Packaging</subject><subject>Personal communication networks</subject><subject>Principal component analysis</subject><subject>Simultaneous localization and mapping</subject><subject>Sparse matrices</subject><issn>1550-5499</issn><issn>2380-7504</issn><isbn>9781424444205</isbn><isbn>1424444209</isbn><isbn>1424444195</isbn><isbn>9781424444199</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotUMlOwzAUNJtEW_oBiIt_IMF-XmIfUUShUiUuwLV6SV5aI7IoNgf-nkhkLjOakUajYexeilxK4R_3ZfmZgxA-N9p4KOCCraUGPUN6c8lWoJzICiP0Fdv6wi0ZCHPNVtIYkRnt_S1bx_glhPLg7Irty6EbsU48hlOP6WeiyNth4udwOmdxJGp46BPNduLjMEveUKynMKYw9Bz7hneY6nPoT3fspsXvSNuFN-xj9_xevmaHt5d9-XTIAjidMrQgCwkWlaqAHAAYUymiqvGI1rSNtaTR47zfVKQdFKolqFSDkqysarVhD_-9gYiO4xQ6nH6PyyXqD-_pUas</recordid><startdate>200909</startdate><enddate>200909</enddate><creator>Calonder, Michael</creator><creator>Lepetit, Vincent</creator><creator>Fua, Pascal</creator><creator>Konolige, Kurt</creator><creator>Bowman, James</creator><creator>Mihelich, Patrick</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>200909</creationdate><title>Compact signatures for high-speed interest point description and matching</title><author>Calonder, Michael ; Lepetit, Vincent ; Fua, Pascal ; Konolige, Kurt ; Bowman, James ; Mihelich, Patrick</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i284t-a6217126a33b2e822255b3eebd9aa65fd66e4a9a7815be48273fe2b3da1e61bc3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Computational efficiency</topic><topic>Costs</topic><topic>Distributed computing</topic><topic>Handheld computers</topic><topic>Mobile computing</topic><topic>Packaging</topic><topic>Personal communication networks</topic><topic>Principal component analysis</topic><topic>Simultaneous localization and mapping</topic><topic>Sparse matrices</topic><toplevel>online_resources</toplevel><creatorcontrib>Calonder, Michael</creatorcontrib><creatorcontrib>Lepetit, Vincent</creatorcontrib><creatorcontrib>Fua, Pascal</creatorcontrib><creatorcontrib>Konolige, Kurt</creatorcontrib><creatorcontrib>Bowman, James</creatorcontrib><creatorcontrib>Mihelich, Patrick</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Calonder, Michael</au><au>Lepetit, Vincent</au><au>Fua, Pascal</au><au>Konolige, Kurt</au><au>Bowman, James</au><au>Mihelich, Patrick</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Compact signatures for high-speed interest point description and matching</atitle><btitle>2009 IEEE 12th International Conference on Computer Vision</btitle><stitle>ICCV</stitle><date>2009-09</date><risdate>2009</risdate><spage>357</spage><epage>364</epage><pages>357-364</pages><issn>1550-5499</issn><eissn>2380-7504</eissn><isbn>9781424444205</isbn><isbn>1424444209</isbn><eisbn>1424444195</eisbn><eisbn>9781424444199</eisbn><abstract>Prominent feature point descriptors such as SIFT and SURF allow reliable real-time matching but at a computational cost that limits the number of points that can be handled on PCs, and even more on less powerful mobile devices. A recently proposed technique that relies on statistical classification to compute signatures has the potential to be much faster but at the cost of using very large amounts of memory, which makes it impractical for implementation on low-memory devices. In this paper, we show that we can exploit the sparseness of these signatures to compact them, speed up the computation, and drastically reduce memory usage. We base our approach on Compressive Sensing theory. We also highlight its effectiveness by incorporating it into two very different SLAM packages and demonstrating substantial performance increases.</abstract><pub>IEEE</pub><doi>10.1109/ICCV.2009.5459272</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1550-5499
ispartof 2009 IEEE 12th International Conference on Computer Vision, 2009, p.357-364
issn 1550-5499
2380-7504
language eng
recordid cdi_ieee_primary_5459272
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Computational efficiency
Costs
Distributed computing
Handheld computers
Mobile computing
Packaging
Personal communication networks
Principal component analysis
Simultaneous localization and mapping
Sparse matrices
title Compact signatures for high-speed interest point description and matching
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T07%3A36%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Compact%20signatures%20for%20high-speed%20interest%20point%20description%20and%20matching&rft.btitle=2009%20IEEE%2012th%20International%20Conference%20on%20Computer%20Vision&rft.au=Calonder,%20Michael&rft.date=2009-09&rft.spage=357&rft.epage=364&rft.pages=357-364&rft.issn=1550-5499&rft.eissn=2380-7504&rft.isbn=9781424444205&rft.isbn_list=1424444209&rft_id=info:doi/10.1109/ICCV.2009.5459272&rft_dat=%3Cieee_6IE%3E5459272%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424444195&rft.eisbn_list=9781424444199&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5459272&rfr_iscdi=true