A HMMER hardware accelerator using divergences
As new protein sequences are discovered on an everyday basis and protein databases continue to grow exponentially with time, computational tools take more and more time to search protein databases to discover the common ancestors of them. HMMER is among the most used tools in protein search and comp...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 410 |
---|---|
container_issue | |
container_start_page | 405 |
container_title | |
container_volume | |
creator | Giraldo, Juan Fernando Eusse Moreano, Nahri Jacobi, Ricardo Pezzuol de Melo, Alba Cristina Magalhaes Alves |
description | As new protein sequences are discovered on an everyday basis and protein databases continue to grow exponentially with time, computational tools take more and more time to search protein databases to discover the common ancestors of them. HMMER is among the most used tools in protein search and comparison and multiple efforts have been made to accelerate its execution by using dedicated hardware prototyped on FPGAs. In this paper we introduce a novel algorithm called the Divergence Algorithm, which not only enables the FPGA accelerator to reduce execution time, but also enables further acceleration of the alignment generation algorithm of the HMMER programs by reducing the number of cells of the Dynamic Programming matrices it has to calculate. We also propose a more accurate performance measurement strategy that considers all the execution times while doing protein searches and alignments, while other works only consider hardware execution times and do not include alignment generation times. Using our proposed hardware accelerator and the Divergence Algorithm, we were able to achieve gains up to 182× when compared to the unaccelerated HMMER software running on a general purpose CPU. |
doi_str_mv | 10.1109/DATE.2010.5457169 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5457169</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5457169</ieee_id><sourcerecordid>5457169</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-dfed857fe634e631321a35922c7d1a74da5582ec51fc6e8351ebdde4f1c92f483</originalsourceid><addsrcrecordid>eNotT9tKAzEUjDew1v0A8WV_IGtO7nlc6mqFFkH2vcTkpEZqlWxV_PtusQeGYZhhhkPIDbAGgLm7-7bvGs5GqaQyoN0JqZyxwllgloHmp2QCSlk6puGMXIHkUhqmpDw_GIJRUA4uSTUM72y8McqZnpCmrefLZfdSv_kSf33B2oeAGyx-91nq7yFv13XMP1jWuA04XJOL5DcDVkeekv6h62dzunh-fJq1C5od29GYMFplEmohR4Dg4IVynAcTwRsZ_WEeg4IUNFqhAF9jRJkgOJ6kFVNy-1-bEXH1VfKHL3-r4-diDxcvRuY</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A HMMER hardware accelerator using divergences</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Giraldo, Juan Fernando Eusse ; Moreano, Nahri ; Jacobi, Ricardo Pezzuol ; de Melo, Alba Cristina Magalhaes Alves</creator><creatorcontrib>Giraldo, Juan Fernando Eusse ; Moreano, Nahri ; Jacobi, Ricardo Pezzuol ; de Melo, Alba Cristina Magalhaes Alves</creatorcontrib><description>As new protein sequences are discovered on an everyday basis and protein databases continue to grow exponentially with time, computational tools take more and more time to search protein databases to discover the common ancestors of them. HMMER is among the most used tools in protein search and comparison and multiple efforts have been made to accelerate its execution by using dedicated hardware prototyped on FPGAs. In this paper we introduce a novel algorithm called the Divergence Algorithm, which not only enables the FPGA accelerator to reduce execution time, but also enables further acceleration of the alignment generation algorithm of the HMMER programs by reducing the number of cells of the Dynamic Programming matrices it has to calculate. We also propose a more accurate performance measurement strategy that considers all the execution times while doing protein searches and alignments, while other works only consider hardware execution times and do not include alignment generation times. Using our proposed hardware accelerator and the Divergence Algorithm, we were able to achieve gains up to 182× when compared to the unaccelerated HMMER software running on a general purpose CPU.</description><identifier>ISSN: 1530-1591</identifier><identifier>ISBN: 1424470544</identifier><identifier>ISBN: 9781424470549</identifier><identifier>EISSN: 1558-1101</identifier><identifier>EISBN: 9783981080162</identifier><identifier>EISBN: 3981080165</identifier><identifier>DOI: 10.1109/DATE.2010.5457169</identifier><language>eng</language><publisher>IEEE</publisher><subject>Acceleration ; Bioinformatics ; Dynamic programming ; Field programmable gate arrays ; FPGA ; Hardware ; Hardware accelerator ; Hidden Markov models ; HMMER ; Measurement ; Proteins ; Prototypes ; Software algorithms</subject><ispartof>2010 Design, Automation & Test in Europe Conference & Exhibition (DATE 2010), 2010, p.405-410</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5457169$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5457169$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Giraldo, Juan Fernando Eusse</creatorcontrib><creatorcontrib>Moreano, Nahri</creatorcontrib><creatorcontrib>Jacobi, Ricardo Pezzuol</creatorcontrib><creatorcontrib>de Melo, Alba Cristina Magalhaes Alves</creatorcontrib><title>A HMMER hardware accelerator using divergences</title><title>2010 Design, Automation & Test in Europe Conference & Exhibition (DATE 2010)</title><addtitle>DATE</addtitle><description>As new protein sequences are discovered on an everyday basis and protein databases continue to grow exponentially with time, computational tools take more and more time to search protein databases to discover the common ancestors of them. HMMER is among the most used tools in protein search and comparison and multiple efforts have been made to accelerate its execution by using dedicated hardware prototyped on FPGAs. In this paper we introduce a novel algorithm called the Divergence Algorithm, which not only enables the FPGA accelerator to reduce execution time, but also enables further acceleration of the alignment generation algorithm of the HMMER programs by reducing the number of cells of the Dynamic Programming matrices it has to calculate. We also propose a more accurate performance measurement strategy that considers all the execution times while doing protein searches and alignments, while other works only consider hardware execution times and do not include alignment generation times. Using our proposed hardware accelerator and the Divergence Algorithm, we were able to achieve gains up to 182× when compared to the unaccelerated HMMER software running on a general purpose CPU.</description><subject>Acceleration</subject><subject>Bioinformatics</subject><subject>Dynamic programming</subject><subject>Field programmable gate arrays</subject><subject>FPGA</subject><subject>Hardware</subject><subject>Hardware accelerator</subject><subject>Hidden Markov models</subject><subject>HMMER</subject><subject>Measurement</subject><subject>Proteins</subject><subject>Prototypes</subject><subject>Software algorithms</subject><issn>1530-1591</issn><issn>1558-1101</issn><isbn>1424470544</isbn><isbn>9781424470549</isbn><isbn>9783981080162</isbn><isbn>3981080165</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotT9tKAzEUjDew1v0A8WV_IGtO7nlc6mqFFkH2vcTkpEZqlWxV_PtusQeGYZhhhkPIDbAGgLm7-7bvGs5GqaQyoN0JqZyxwllgloHmp2QCSlk6puGMXIHkUhqmpDw_GIJRUA4uSTUM72y8McqZnpCmrefLZfdSv_kSf33B2oeAGyx-91nq7yFv13XMP1jWuA04XJOL5DcDVkeekv6h62dzunh-fJq1C5od29GYMFplEmohR4Dg4IVynAcTwRsZ_WEeg4IUNFqhAF9jRJkgOJ6kFVNy-1-bEXH1VfKHL3-r4-diDxcvRuY</recordid><startdate>201003</startdate><enddate>201003</enddate><creator>Giraldo, Juan Fernando Eusse</creator><creator>Moreano, Nahri</creator><creator>Jacobi, Ricardo Pezzuol</creator><creator>de Melo, Alba Cristina Magalhaes Alves</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201003</creationdate><title>A HMMER hardware accelerator using divergences</title><author>Giraldo, Juan Fernando Eusse ; Moreano, Nahri ; Jacobi, Ricardo Pezzuol ; de Melo, Alba Cristina Magalhaes Alves</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-dfed857fe634e631321a35922c7d1a74da5582ec51fc6e8351ebdde4f1c92f483</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Acceleration</topic><topic>Bioinformatics</topic><topic>Dynamic programming</topic><topic>Field programmable gate arrays</topic><topic>FPGA</topic><topic>Hardware</topic><topic>Hardware accelerator</topic><topic>Hidden Markov models</topic><topic>HMMER</topic><topic>Measurement</topic><topic>Proteins</topic><topic>Prototypes</topic><topic>Software algorithms</topic><toplevel>online_resources</toplevel><creatorcontrib>Giraldo, Juan Fernando Eusse</creatorcontrib><creatorcontrib>Moreano, Nahri</creatorcontrib><creatorcontrib>Jacobi, Ricardo Pezzuol</creatorcontrib><creatorcontrib>de Melo, Alba Cristina Magalhaes Alves</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Giraldo, Juan Fernando Eusse</au><au>Moreano, Nahri</au><au>Jacobi, Ricardo Pezzuol</au><au>de Melo, Alba Cristina Magalhaes Alves</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A HMMER hardware accelerator using divergences</atitle><btitle>2010 Design, Automation & Test in Europe Conference & Exhibition (DATE 2010)</btitle><stitle>DATE</stitle><date>2010-03</date><risdate>2010</risdate><spage>405</spage><epage>410</epage><pages>405-410</pages><issn>1530-1591</issn><eissn>1558-1101</eissn><isbn>1424470544</isbn><isbn>9781424470549</isbn><eisbn>9783981080162</eisbn><eisbn>3981080165</eisbn><abstract>As new protein sequences are discovered on an everyday basis and protein databases continue to grow exponentially with time, computational tools take more and more time to search protein databases to discover the common ancestors of them. HMMER is among the most used tools in protein search and comparison and multiple efforts have been made to accelerate its execution by using dedicated hardware prototyped on FPGAs. In this paper we introduce a novel algorithm called the Divergence Algorithm, which not only enables the FPGA accelerator to reduce execution time, but also enables further acceleration of the alignment generation algorithm of the HMMER programs by reducing the number of cells of the Dynamic Programming matrices it has to calculate. We also propose a more accurate performance measurement strategy that considers all the execution times while doing protein searches and alignments, while other works only consider hardware execution times and do not include alignment generation times. Using our proposed hardware accelerator and the Divergence Algorithm, we were able to achieve gains up to 182× when compared to the unaccelerated HMMER software running on a general purpose CPU.</abstract><pub>IEEE</pub><doi>10.1109/DATE.2010.5457169</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1530-1591 |
ispartof | 2010 Design, Automation & Test in Europe Conference & Exhibition (DATE 2010), 2010, p.405-410 |
issn | 1530-1591 1558-1101 |
language | eng |
recordid | cdi_ieee_primary_5457169 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Acceleration Bioinformatics Dynamic programming Field programmable gate arrays FPGA Hardware Hardware accelerator Hidden Markov models HMMER Measurement Proteins Prototypes Software algorithms |
title | A HMMER hardware accelerator using divergences |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T10%3A01%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20HMMER%20hardware%20accelerator%20using%20divergences&rft.btitle=2010%20Design,%20Automation%20&%20Test%20in%20Europe%20Conference%20&%20Exhibition%20(DATE%202010)&rft.au=Giraldo,%20Juan%20Fernando%20Eusse&rft.date=2010-03&rft.spage=405&rft.epage=410&rft.pages=405-410&rft.issn=1530-1591&rft.eissn=1558-1101&rft.isbn=1424470544&rft.isbn_list=9781424470549&rft_id=info:doi/10.1109/DATE.2010.5457169&rft_dat=%3Cieee_6IE%3E5457169%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783981080162&rft.eisbn_list=3981080165&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5457169&rfr_iscdi=true |