Parabolic Equation Simulations of Reverberation Statistics From Non-Gaussian-Distributed Bottom Roughness
In this paper, a two-way parabolic equation (PE) method is developed for modeling rough interface reverberation. The model is employed to estimate the reverberation envelope probability density function from bottom roughness with Gaussian and exponential height distributions. For Gaussian-distribute...
Gespeichert in:
Veröffentlicht in: | IEEE journal of oceanic engineering 2010-04, Vol.35 (2), p.199-208 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 208 |
---|---|
container_issue | 2 |
container_start_page | 199 |
container_title | IEEE journal of oceanic engineering |
container_volume | 35 |
creator | Lingevitch, Joseph F LePage, Kevin D |
description | In this paper, a two-way parabolic equation (PE) method is developed for modeling rough interface reverberation. The model is employed to estimate the reverberation envelope probability density function from bottom roughness with Gaussian and exponential height distributions. For Gaussian-distributed roughness, the PE gives envelope statistics that closely conform to the expected Rayleigh distribution. However, for non-Gaussian-distributed roughness heights, heavy-tailed reverberation envelope statistics are observed. The PE simulation results are compared to the analytical model of K-distributed reverberation by Abraham and Lyons [IEEE J. Ocean. Eng., vol. 29, pp. 800-813, 2002] for discrete scatterers and to numerical predictions of the first and second moments of the reverberation intensity estimated with a coupled mode reverberation model for the multipath insonification of rough surfaces. |
doi_str_mv | 10.1109/JOE.2010.2044054 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_5454409</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5454409</ieee_id><sourcerecordid>2716987161</sourcerecordid><originalsourceid>FETCH-LOGICAL-c323t-767a79df835152a375e659887bda33fff0705c5455798a50424a19a10c292eca3</originalsourceid><addsrcrecordid>eNpdkD1PwzAQhi0EEqWwI7FEYmBKOX_F8chHW0AVRQXmyHEdcJXErZ0g8e9xacXAdHd6nzudHoTOMYwwBnn9NB-PCMSJAGPA2QEaYM7zFGcSH6IB0IylErg8RichrAAwY0IOkH1RXpWutjoZb3rVWdcmr7bp6982JK5KFubL-NL4fdjFGjqrQzLxrkmeXZtOVR-CVW16HxNvy74zy-TWdV3MF67_-GxNCKfoqFJ1MGf7OkTvk_Hb3UM6m08f725mqaaEdqnIhBJyWeWUY04UFdxkXOa5KJeK0qqqQADXnHEuZK44MMIUlgqDJpIYregQXe3urr3b9CZ0RWODNnWtWuP6UAiWEYo5QCQv_5Er1_s2PldgICKK5CyPFOwo7V0I3lTF2ttG-e8IFVv1RVRfbNUXe_Vx5WK3Yo0xf3j8OcaS_gCNP39r</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1027204548</pqid></control><display><type>article</type><title>Parabolic Equation Simulations of Reverberation Statistics From Non-Gaussian-Distributed Bottom Roughness</title><source>IEEE Electronic Library (IEL)</source><creator>Lingevitch, Joseph F ; LePage, Kevin D</creator><creatorcontrib>Lingevitch, Joseph F ; LePage, Kevin D</creatorcontrib><description>In this paper, a two-way parabolic equation (PE) method is developed for modeling rough interface reverberation. The model is employed to estimate the reverberation envelope probability density function from bottom roughness with Gaussian and exponential height distributions. For Gaussian-distributed roughness, the PE gives envelope statistics that closely conform to the expected Rayleigh distribution. However, for non-Gaussian-distributed roughness heights, heavy-tailed reverberation envelope statistics are observed. The PE simulation results are compared to the analytical model of K-distributed reverberation by Abraham and Lyons [IEEE J. Ocean. Eng., vol. 29, pp. 800-813, 2002] for discrete scatterers and to numerical predictions of the first and second moments of the reverberation intensity estimated with a coupled mode reverberation model for the multipath insonification of rough surfaces.</description><identifier>ISSN: 0364-9059</identifier><identifier>EISSN: 1558-1691</identifier><identifier>DOI: 10.1109/JOE.2010.2044054</identifier><identifier>CODEN: IJOEDY</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Analytical models ; Clutter ; Computer simulation ; Coupled modes ; Envelopes ; Equations ; Gaussian distribution ; Mathematical analysis ; Mathematical models ; Oceans ; parabolic equation (PE) ; Polyethylenes ; Predictive models ; Probability density function ; Rayleigh scattering ; Reverberation ; Roughness ; Statistical distributions ; Statistics</subject><ispartof>IEEE journal of oceanic engineering, 2010-04, Vol.35 (2), p.199-208</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Apr 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c323t-767a79df835152a375e659887bda33fff0705c5455798a50424a19a10c292eca3</citedby><cites>FETCH-LOGICAL-c323t-767a79df835152a375e659887bda33fff0705c5455798a50424a19a10c292eca3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5454409$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27922,27923,54756</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5454409$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Lingevitch, Joseph F</creatorcontrib><creatorcontrib>LePage, Kevin D</creatorcontrib><title>Parabolic Equation Simulations of Reverberation Statistics From Non-Gaussian-Distributed Bottom Roughness</title><title>IEEE journal of oceanic engineering</title><addtitle>JOE</addtitle><description>In this paper, a two-way parabolic equation (PE) method is developed for modeling rough interface reverberation. The model is employed to estimate the reverberation envelope probability density function from bottom roughness with Gaussian and exponential height distributions. For Gaussian-distributed roughness, the PE gives envelope statistics that closely conform to the expected Rayleigh distribution. However, for non-Gaussian-distributed roughness heights, heavy-tailed reverberation envelope statistics are observed. The PE simulation results are compared to the analytical model of K-distributed reverberation by Abraham and Lyons [IEEE J. Ocean. Eng., vol. 29, pp. 800-813, 2002] for discrete scatterers and to numerical predictions of the first and second moments of the reverberation intensity estimated with a coupled mode reverberation model for the multipath insonification of rough surfaces.</description><subject>Analytical models</subject><subject>Clutter</subject><subject>Computer simulation</subject><subject>Coupled modes</subject><subject>Envelopes</subject><subject>Equations</subject><subject>Gaussian distribution</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Oceans</subject><subject>parabolic equation (PE)</subject><subject>Polyethylenes</subject><subject>Predictive models</subject><subject>Probability density function</subject><subject>Rayleigh scattering</subject><subject>Reverberation</subject><subject>Roughness</subject><subject>Statistical distributions</subject><subject>Statistics</subject><issn>0364-9059</issn><issn>1558-1691</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkD1PwzAQhi0EEqWwI7FEYmBKOX_F8chHW0AVRQXmyHEdcJXErZ0g8e9xacXAdHd6nzudHoTOMYwwBnn9NB-PCMSJAGPA2QEaYM7zFGcSH6IB0IylErg8RichrAAwY0IOkH1RXpWutjoZb3rVWdcmr7bp6982JK5KFubL-NL4fdjFGjqrQzLxrkmeXZtOVR-CVW16HxNvy74zy-TWdV3MF67_-GxNCKfoqFJ1MGf7OkTvk_Hb3UM6m08f725mqaaEdqnIhBJyWeWUY04UFdxkXOa5KJeK0qqqQADXnHEuZK44MMIUlgqDJpIYregQXe3urr3b9CZ0RWODNnWtWuP6UAiWEYo5QCQv_5Er1_s2PldgICKK5CyPFOwo7V0I3lTF2ttG-e8IFVv1RVRfbNUXe_Vx5WK3Yo0xf3j8OcaS_gCNP39r</recordid><startdate>201004</startdate><enddate>201004</enddate><creator>Lingevitch, Joseph F</creator><creator>LePage, Kevin D</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>7TN</scope><scope>8FD</scope><scope>F1W</scope><scope>FR3</scope><scope>H96</scope><scope>JQ2</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope></search><sort><creationdate>201004</creationdate><title>Parabolic Equation Simulations of Reverberation Statistics From Non-Gaussian-Distributed Bottom Roughness</title><author>Lingevitch, Joseph F ; LePage, Kevin D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c323t-767a79df835152a375e659887bda33fff0705c5455798a50424a19a10c292eca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Analytical models</topic><topic>Clutter</topic><topic>Computer simulation</topic><topic>Coupled modes</topic><topic>Envelopes</topic><topic>Equations</topic><topic>Gaussian distribution</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Oceans</topic><topic>parabolic equation (PE)</topic><topic>Polyethylenes</topic><topic>Predictive models</topic><topic>Probability density function</topic><topic>Rayleigh scattering</topic><topic>Reverberation</topic><topic>Roughness</topic><topic>Statistical distributions</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lingevitch, Joseph F</creatorcontrib><creatorcontrib>LePage, Kevin D</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Technology Research Database</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><jtitle>IEEE journal of oceanic engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lingevitch, Joseph F</au><au>LePage, Kevin D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Parabolic Equation Simulations of Reverberation Statistics From Non-Gaussian-Distributed Bottom Roughness</atitle><jtitle>IEEE journal of oceanic engineering</jtitle><stitle>JOE</stitle><date>2010-04</date><risdate>2010</risdate><volume>35</volume><issue>2</issue><spage>199</spage><epage>208</epage><pages>199-208</pages><issn>0364-9059</issn><eissn>1558-1691</eissn><coden>IJOEDY</coden><abstract>In this paper, a two-way parabolic equation (PE) method is developed for modeling rough interface reverberation. The model is employed to estimate the reverberation envelope probability density function from bottom roughness with Gaussian and exponential height distributions. For Gaussian-distributed roughness, the PE gives envelope statistics that closely conform to the expected Rayleigh distribution. However, for non-Gaussian-distributed roughness heights, heavy-tailed reverberation envelope statistics are observed. The PE simulation results are compared to the analytical model of K-distributed reverberation by Abraham and Lyons [IEEE J. Ocean. Eng., vol. 29, pp. 800-813, 2002] for discrete scatterers and to numerical predictions of the first and second moments of the reverberation intensity estimated with a coupled mode reverberation model for the multipath insonification of rough surfaces.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JOE.2010.2044054</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0364-9059 |
ispartof | IEEE journal of oceanic engineering, 2010-04, Vol.35 (2), p.199-208 |
issn | 0364-9059 1558-1691 |
language | eng |
recordid | cdi_ieee_primary_5454409 |
source | IEEE Electronic Library (IEL) |
subjects | Analytical models Clutter Computer simulation Coupled modes Envelopes Equations Gaussian distribution Mathematical analysis Mathematical models Oceans parabolic equation (PE) Polyethylenes Predictive models Probability density function Rayleigh scattering Reverberation Roughness Statistical distributions Statistics |
title | Parabolic Equation Simulations of Reverberation Statistics From Non-Gaussian-Distributed Bottom Roughness |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T16%3A27%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Parabolic%20Equation%20Simulations%20of%20Reverberation%20Statistics%20From%20Non-Gaussian-Distributed%20Bottom%20Roughness&rft.jtitle=IEEE%20journal%20of%20oceanic%20engineering&rft.au=Lingevitch,%20Joseph%20F&rft.date=2010-04&rft.volume=35&rft.issue=2&rft.spage=199&rft.epage=208&rft.pages=199-208&rft.issn=0364-9059&rft.eissn=1558-1691&rft.coden=IJOEDY&rft_id=info:doi/10.1109/JOE.2010.2044054&rft_dat=%3Cproquest_RIE%3E2716987161%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1027204548&rft_id=info:pmid/&rft_ieee_id=5454409&rfr_iscdi=true |