Applying Modified Discrete Particle Swarm Optimization Algorithm and Genetic Algorithm for system identification
A system identification problem can be formulated as an optimization task where the objectives are to find a model and a set of parameters that minimize the prediction error between the plant output and the model output. This paper presents a technique for identifying the parameters of system using...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 358 |
---|---|
container_issue | |
container_start_page | 354 |
container_title | |
container_volume | 5 |
creator | Badamchizadeh, M A Madani, K |
description | A system identification problem can be formulated as an optimization task where the objectives are to find a model and a set of parameters that minimize the prediction error between the plant output and the model output. This paper presents a technique for identifying the parameters of system using Genetic Algorithms and the Modified Discrete Particle Swarm Optimization Algorithm. Derived from a step test a robust identification method for process is proposed. The simulation results show suggested methods are robust in the presence of large amounts of measurement noise, and discrete particle swarm optimization algorithm has a lower cost value than Genetic Algorithm. |
doi_str_mv | 10.1109/ICCAE.2010.5451412 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5451412</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5451412</ieee_id><sourcerecordid>5451412</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-a94238024c13afd2457d39b9035009f8251a9b57c599f8a4d07b02df6729a0a73</originalsourceid><addsrcrecordid>eNpNkN1KAzEQhSNSUGtfQG_yAlvzu0kul7XWQqWCel2ym2wd2T-yAalPb9BedG4O3zDnwBmE7ihZUkrMw6Ysi9WSkcRSSCoou0ALozQVTAgpda4uzzk3ZIZuGCHGcK1VfoUW0_RF0iSz1uIajcU4tkfoD_hlcNCAd_gRpjr46PGrDRHq1uO3bxs6vBsjdPBjIww9LtrDECB-dtj2Dq9979Pp2bYZAp6OU_QdBuf7mKLrP-ctmjW2nfzipHP08bR6L5-z7W69KYttBlTJmFkjGNeEiZpy2zgmpHLcVIZwmdo0mklqTSVVLU0iKxxRFWGuyRUzlljF5-j-Pxe89_sxQGfDcX96Gv8F3SBezA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Applying Modified Discrete Particle Swarm Optimization Algorithm and Genetic Algorithm for system identification</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Badamchizadeh, M A ; Madani, K</creator><creatorcontrib>Badamchizadeh, M A ; Madani, K</creatorcontrib><description>A system identification problem can be formulated as an optimization task where the objectives are to find a model and a set of parameters that minimize the prediction error between the plant output and the model output. This paper presents a technique for identifying the parameters of system using Genetic Algorithms and the Modified Discrete Particle Swarm Optimization Algorithm. Derived from a step test a robust identification method for process is proposed. The simulation results show suggested methods are robust in the presence of large amounts of measurement noise, and discrete particle swarm optimization algorithm has a lower cost value than Genetic Algorithm.</description><identifier>ISBN: 9781424455690</identifier><identifier>ISBN: 1424455693</identifier><identifier>ISBN: 1424455855</identifier><identifier>ISBN: 9781424455850</identifier><identifier>EISBN: 9781424455867</identifier><identifier>EISBN: 1424455863</identifier><identifier>DOI: 10.1109/ICCAE.2010.5451412</identifier><identifier>LCCN: 2009938876</identifier><language>eng</language><publisher>IEEE</publisher><subject>Buildings ; Discrete particle swarm optimization algorithm ; Evolution (biology) ; Evolutionary computation ; Genetic algorithm ; Genetic algorithms ; Noise robustness ; Particle swarm optimization ; Power system modeling ; Predictive models ; Process control ; System identification</subject><ispartof>2010 The 2nd International Conference on Computer and Automation Engineering (ICCAE), 2010, Vol.5, p.354-358</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5451412$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,27923,54918</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5451412$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Badamchizadeh, M A</creatorcontrib><creatorcontrib>Madani, K</creatorcontrib><title>Applying Modified Discrete Particle Swarm Optimization Algorithm and Genetic Algorithm for system identification</title><title>2010 The 2nd International Conference on Computer and Automation Engineering (ICCAE)</title><addtitle>ICCAE</addtitle><description>A system identification problem can be formulated as an optimization task where the objectives are to find a model and a set of parameters that minimize the prediction error between the plant output and the model output. This paper presents a technique for identifying the parameters of system using Genetic Algorithms and the Modified Discrete Particle Swarm Optimization Algorithm. Derived from a step test a robust identification method for process is proposed. The simulation results show suggested methods are robust in the presence of large amounts of measurement noise, and discrete particle swarm optimization algorithm has a lower cost value than Genetic Algorithm.</description><subject>Buildings</subject><subject>Discrete particle swarm optimization algorithm</subject><subject>Evolution (biology)</subject><subject>Evolutionary computation</subject><subject>Genetic algorithm</subject><subject>Genetic algorithms</subject><subject>Noise robustness</subject><subject>Particle swarm optimization</subject><subject>Power system modeling</subject><subject>Predictive models</subject><subject>Process control</subject><subject>System identification</subject><isbn>9781424455690</isbn><isbn>1424455693</isbn><isbn>1424455855</isbn><isbn>9781424455850</isbn><isbn>9781424455867</isbn><isbn>1424455863</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpNkN1KAzEQhSNSUGtfQG_yAlvzu0kul7XWQqWCel2ym2wd2T-yAalPb9BedG4O3zDnwBmE7ihZUkrMw6Ysi9WSkcRSSCoou0ALozQVTAgpda4uzzk3ZIZuGCHGcK1VfoUW0_RF0iSz1uIajcU4tkfoD_hlcNCAd_gRpjr46PGrDRHq1uO3bxs6vBsjdPBjIww9LtrDECB-dtj2Dq9979Pp2bYZAp6OU_QdBuf7mKLrP-ctmjW2nfzipHP08bR6L5-z7W69KYttBlTJmFkjGNeEiZpy2zgmpHLcVIZwmdo0mklqTSVVLU0iKxxRFWGuyRUzlljF5-j-Pxe89_sxQGfDcX96Gv8F3SBezA</recordid><startdate>201002</startdate><enddate>201002</enddate><creator>Badamchizadeh, M A</creator><creator>Madani, K</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201002</creationdate><title>Applying Modified Discrete Particle Swarm Optimization Algorithm and Genetic Algorithm for system identification</title><author>Badamchizadeh, M A ; Madani, K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-a94238024c13afd2457d39b9035009f8251a9b57c599f8a4d07b02df6729a0a73</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Buildings</topic><topic>Discrete particle swarm optimization algorithm</topic><topic>Evolution (biology)</topic><topic>Evolutionary computation</topic><topic>Genetic algorithm</topic><topic>Genetic algorithms</topic><topic>Noise robustness</topic><topic>Particle swarm optimization</topic><topic>Power system modeling</topic><topic>Predictive models</topic><topic>Process control</topic><topic>System identification</topic><toplevel>online_resources</toplevel><creatorcontrib>Badamchizadeh, M A</creatorcontrib><creatorcontrib>Madani, K</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Badamchizadeh, M A</au><au>Madani, K</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Applying Modified Discrete Particle Swarm Optimization Algorithm and Genetic Algorithm for system identification</atitle><btitle>2010 The 2nd International Conference on Computer and Automation Engineering (ICCAE)</btitle><stitle>ICCAE</stitle><date>2010-02</date><risdate>2010</risdate><volume>5</volume><spage>354</spage><epage>358</epage><pages>354-358</pages><isbn>9781424455690</isbn><isbn>1424455693</isbn><isbn>1424455855</isbn><isbn>9781424455850</isbn><eisbn>9781424455867</eisbn><eisbn>1424455863</eisbn><abstract>A system identification problem can be formulated as an optimization task where the objectives are to find a model and a set of parameters that minimize the prediction error between the plant output and the model output. This paper presents a technique for identifying the parameters of system using Genetic Algorithms and the Modified Discrete Particle Swarm Optimization Algorithm. Derived from a step test a robust identification method for process is proposed. The simulation results show suggested methods are robust in the presence of large amounts of measurement noise, and discrete particle swarm optimization algorithm has a lower cost value than Genetic Algorithm.</abstract><pub>IEEE</pub><doi>10.1109/ICCAE.2010.5451412</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 9781424455690 |
ispartof | 2010 The 2nd International Conference on Computer and Automation Engineering (ICCAE), 2010, Vol.5, p.354-358 |
issn | |
language | eng |
recordid | cdi_ieee_primary_5451412 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Buildings Discrete particle swarm optimization algorithm Evolution (biology) Evolutionary computation Genetic algorithm Genetic algorithms Noise robustness Particle swarm optimization Power system modeling Predictive models Process control System identification |
title | Applying Modified Discrete Particle Swarm Optimization Algorithm and Genetic Algorithm for system identification |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T09%3A34%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Applying%20Modified%20Discrete%20Particle%20Swarm%20Optimization%20Algorithm%20and%20Genetic%20Algorithm%20for%20system%20identification&rft.btitle=2010%20The%202nd%20International%20Conference%20on%20Computer%20and%20Automation%20Engineering%20(ICCAE)&rft.au=Badamchizadeh,%20M%20A&rft.date=2010-02&rft.volume=5&rft.spage=354&rft.epage=358&rft.pages=354-358&rft.isbn=9781424455690&rft.isbn_list=1424455693&rft.isbn_list=1424455855&rft.isbn_list=9781424455850&rft_id=info:doi/10.1109/ICCAE.2010.5451412&rft_dat=%3Cieee_6IE%3E5451412%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424455867&rft.eisbn_list=1424455863&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5451412&rfr_iscdi=true |