Applying Modified Discrete Particle Swarm Optimization Algorithm and Genetic Algorithm for system identification

A system identification problem can be formulated as an optimization task where the objectives are to find a model and a set of parameters that minimize the prediction error between the plant output and the model output. This paper presents a technique for identifying the parameters of system using...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Badamchizadeh, M A, Madani, K
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 358
container_issue
container_start_page 354
container_title
container_volume 5
creator Badamchizadeh, M A
Madani, K
description A system identification problem can be formulated as an optimization task where the objectives are to find a model and a set of parameters that minimize the prediction error between the plant output and the model output. This paper presents a technique for identifying the parameters of system using Genetic Algorithms and the Modified Discrete Particle Swarm Optimization Algorithm. Derived from a step test a robust identification method for process is proposed. The simulation results show suggested methods are robust in the presence of large amounts of measurement noise, and discrete particle swarm optimization algorithm has a lower cost value than Genetic Algorithm.
doi_str_mv 10.1109/ICCAE.2010.5451412
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5451412</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5451412</ieee_id><sourcerecordid>5451412</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-a94238024c13afd2457d39b9035009f8251a9b57c599f8a4d07b02df6729a0a73</originalsourceid><addsrcrecordid>eNpNkN1KAzEQhSNSUGtfQG_yAlvzu0kul7XWQqWCel2ym2wd2T-yAalPb9BedG4O3zDnwBmE7ihZUkrMw6Ysi9WSkcRSSCoou0ALozQVTAgpda4uzzk3ZIZuGCHGcK1VfoUW0_RF0iSz1uIajcU4tkfoD_hlcNCAd_gRpjr46PGrDRHq1uO3bxs6vBsjdPBjIww9LtrDECB-dtj2Dq9979Pp2bYZAp6OU_QdBuf7mKLrP-ctmjW2nfzipHP08bR6L5-z7W69KYttBlTJmFkjGNeEiZpy2zgmpHLcVIZwmdo0mklqTSVVLU0iKxxRFWGuyRUzlljF5-j-Pxe89_sxQGfDcX96Gv8F3SBezA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Applying Modified Discrete Particle Swarm Optimization Algorithm and Genetic Algorithm for system identification</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Badamchizadeh, M A ; Madani, K</creator><creatorcontrib>Badamchizadeh, M A ; Madani, K</creatorcontrib><description>A system identification problem can be formulated as an optimization task where the objectives are to find a model and a set of parameters that minimize the prediction error between the plant output and the model output. This paper presents a technique for identifying the parameters of system using Genetic Algorithms and the Modified Discrete Particle Swarm Optimization Algorithm. Derived from a step test a robust identification method for process is proposed. The simulation results show suggested methods are robust in the presence of large amounts of measurement noise, and discrete particle swarm optimization algorithm has a lower cost value than Genetic Algorithm.</description><identifier>ISBN: 9781424455690</identifier><identifier>ISBN: 1424455693</identifier><identifier>ISBN: 1424455855</identifier><identifier>ISBN: 9781424455850</identifier><identifier>EISBN: 9781424455867</identifier><identifier>EISBN: 1424455863</identifier><identifier>DOI: 10.1109/ICCAE.2010.5451412</identifier><identifier>LCCN: 2009938876</identifier><language>eng</language><publisher>IEEE</publisher><subject>Buildings ; Discrete particle swarm optimization algorithm ; Evolution (biology) ; Evolutionary computation ; Genetic algorithm ; Genetic algorithms ; Noise robustness ; Particle swarm optimization ; Power system modeling ; Predictive models ; Process control ; System identification</subject><ispartof>2010 The 2nd International Conference on Computer and Automation Engineering (ICCAE), 2010, Vol.5, p.354-358</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5451412$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,27923,54918</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5451412$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Badamchizadeh, M A</creatorcontrib><creatorcontrib>Madani, K</creatorcontrib><title>Applying Modified Discrete Particle Swarm Optimization Algorithm and Genetic Algorithm for system identification</title><title>2010 The 2nd International Conference on Computer and Automation Engineering (ICCAE)</title><addtitle>ICCAE</addtitle><description>A system identification problem can be formulated as an optimization task where the objectives are to find a model and a set of parameters that minimize the prediction error between the plant output and the model output. This paper presents a technique for identifying the parameters of system using Genetic Algorithms and the Modified Discrete Particle Swarm Optimization Algorithm. Derived from a step test a robust identification method for process is proposed. The simulation results show suggested methods are robust in the presence of large amounts of measurement noise, and discrete particle swarm optimization algorithm has a lower cost value than Genetic Algorithm.</description><subject>Buildings</subject><subject>Discrete particle swarm optimization algorithm</subject><subject>Evolution (biology)</subject><subject>Evolutionary computation</subject><subject>Genetic algorithm</subject><subject>Genetic algorithms</subject><subject>Noise robustness</subject><subject>Particle swarm optimization</subject><subject>Power system modeling</subject><subject>Predictive models</subject><subject>Process control</subject><subject>System identification</subject><isbn>9781424455690</isbn><isbn>1424455693</isbn><isbn>1424455855</isbn><isbn>9781424455850</isbn><isbn>9781424455867</isbn><isbn>1424455863</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpNkN1KAzEQhSNSUGtfQG_yAlvzu0kul7XWQqWCel2ym2wd2T-yAalPb9BedG4O3zDnwBmE7ihZUkrMw6Ysi9WSkcRSSCoou0ALozQVTAgpda4uzzk3ZIZuGCHGcK1VfoUW0_RF0iSz1uIajcU4tkfoD_hlcNCAd_gRpjr46PGrDRHq1uO3bxs6vBsjdPBjIww9LtrDECB-dtj2Dq9979Pp2bYZAp6OU_QdBuf7mKLrP-ctmjW2nfzipHP08bR6L5-z7W69KYttBlTJmFkjGNeEiZpy2zgmpHLcVIZwmdo0mklqTSVVLU0iKxxRFWGuyRUzlljF5-j-Pxe89_sxQGfDcX96Gv8F3SBezA</recordid><startdate>201002</startdate><enddate>201002</enddate><creator>Badamchizadeh, M A</creator><creator>Madani, K</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201002</creationdate><title>Applying Modified Discrete Particle Swarm Optimization Algorithm and Genetic Algorithm for system identification</title><author>Badamchizadeh, M A ; Madani, K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-a94238024c13afd2457d39b9035009f8251a9b57c599f8a4d07b02df6729a0a73</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Buildings</topic><topic>Discrete particle swarm optimization algorithm</topic><topic>Evolution (biology)</topic><topic>Evolutionary computation</topic><topic>Genetic algorithm</topic><topic>Genetic algorithms</topic><topic>Noise robustness</topic><topic>Particle swarm optimization</topic><topic>Power system modeling</topic><topic>Predictive models</topic><topic>Process control</topic><topic>System identification</topic><toplevel>online_resources</toplevel><creatorcontrib>Badamchizadeh, M A</creatorcontrib><creatorcontrib>Madani, K</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Badamchizadeh, M A</au><au>Madani, K</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Applying Modified Discrete Particle Swarm Optimization Algorithm and Genetic Algorithm for system identification</atitle><btitle>2010 The 2nd International Conference on Computer and Automation Engineering (ICCAE)</btitle><stitle>ICCAE</stitle><date>2010-02</date><risdate>2010</risdate><volume>5</volume><spage>354</spage><epage>358</epage><pages>354-358</pages><isbn>9781424455690</isbn><isbn>1424455693</isbn><isbn>1424455855</isbn><isbn>9781424455850</isbn><eisbn>9781424455867</eisbn><eisbn>1424455863</eisbn><abstract>A system identification problem can be formulated as an optimization task where the objectives are to find a model and a set of parameters that minimize the prediction error between the plant output and the model output. This paper presents a technique for identifying the parameters of system using Genetic Algorithms and the Modified Discrete Particle Swarm Optimization Algorithm. Derived from a step test a robust identification method for process is proposed. The simulation results show suggested methods are robust in the presence of large amounts of measurement noise, and discrete particle swarm optimization algorithm has a lower cost value than Genetic Algorithm.</abstract><pub>IEEE</pub><doi>10.1109/ICCAE.2010.5451412</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9781424455690
ispartof 2010 The 2nd International Conference on Computer and Automation Engineering (ICCAE), 2010, Vol.5, p.354-358
issn
language eng
recordid cdi_ieee_primary_5451412
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Buildings
Discrete particle swarm optimization algorithm
Evolution (biology)
Evolutionary computation
Genetic algorithm
Genetic algorithms
Noise robustness
Particle swarm optimization
Power system modeling
Predictive models
Process control
System identification
title Applying Modified Discrete Particle Swarm Optimization Algorithm and Genetic Algorithm for system identification
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T09%3A34%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Applying%20Modified%20Discrete%20Particle%20Swarm%20Optimization%20Algorithm%20and%20Genetic%20Algorithm%20for%20system%20identification&rft.btitle=2010%20The%202nd%20International%20Conference%20on%20Computer%20and%20Automation%20Engineering%20(ICCAE)&rft.au=Badamchizadeh,%20M%20A&rft.date=2010-02&rft.volume=5&rft.spage=354&rft.epage=358&rft.pages=354-358&rft.isbn=9781424455690&rft.isbn_list=1424455693&rft.isbn_list=1424455855&rft.isbn_list=9781424455850&rft_id=info:doi/10.1109/ICCAE.2010.5451412&rft_dat=%3Cieee_6IE%3E5451412%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424455867&rft.eisbn_list=1424455863&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5451412&rfr_iscdi=true