Fault test of networked synchronization control system by the combination of RBF neural network and particle swarm optimization

Networked synchronization control has very high technology level, which includes network technology and synchronization control technology, etc. Fault diagnosis of the devices in networked synchronization control system has a great importance for ensuring the normal operation. The radial basis funct...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Wang, Ting, Wang, Heng, Xie, Hao-fei
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 386
container_issue
container_start_page 383
container_title
container_volume 3
creator Wang, Ting
Wang, Heng
Xie, Hao-fei
description Networked synchronization control has very high technology level, which includes network technology and synchronization control technology, etc. Fault diagnosis of the devices in networked synchronization control system has a great importance for ensuring the normal operation. The radial basis function neural network with particle swarm optimization algorithm is developed. The combination method of RBF neural network and particle swarm optimization is applied to fault diagnosis of networked synchronization control system. The test results indicate that the combination model of RBF neural network and particle swarm optimization can almost entirely recognize each state of the device in networked synchronization control system. The diagnostic accuracy of the combination model of RBF neural network and particle swarm optimization is greater than that of normal RBF neural network.
doi_str_mv 10.1109/ICCAE.2010.5451386
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5451386</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5451386</ieee_id><sourcerecordid>5451386</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-6caee6e818ec590c81b57d2f5e3cf14d6c3fbc8254445d84d15b2f277b92d9c03</originalsourceid><addsrcrecordid>eNpNkEFLAzEQhSNSUGv_gF7yB1qTbJJNjnVpa6EgiJ5LNpml0d1syaaUevGvG2gF5zK8x7wP3iD0QMmMUqKf1lU1X8wYyVpwQQslr9BEl4pyxrkQSpbX_7XUZITuGCFaF0qV8gZNhuGT5Mlhpfgt-lmaQ5twgiHhvsEB0rGPX-DwcAp2F_vgv03yfcC2Dyn2bfaHBB2uTzjtILtd7cP5IsffnpcZcYim_SNhExzem5i8bQEPRxM73O-T7y7cezRqTDvA5LLH6GO5eK9eppvX1bqab6aeliJNpTUAEhRVYIUmVtFalI41AgrbUO6kLZraKiZ4ru0Ud1TUrGFlWWvmtCXFGD2euR4AtvvoOxNP28sPi19ptmZc</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Fault test of networked synchronization control system by the combination of RBF neural network and particle swarm optimization</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Wang, Ting ; Wang, Heng ; Xie, Hao-fei</creator><creatorcontrib>Wang, Ting ; Wang, Heng ; Xie, Hao-fei</creatorcontrib><description>Networked synchronization control has very high technology level, which includes network technology and synchronization control technology, etc. Fault diagnosis of the devices in networked synchronization control system has a great importance for ensuring the normal operation. The radial basis function neural network with particle swarm optimization algorithm is developed. The combination method of RBF neural network and particle swarm optimization is applied to fault diagnosis of networked synchronization control system. The test results indicate that the combination model of RBF neural network and particle swarm optimization can almost entirely recognize each state of the device in networked synchronization control system. The diagnostic accuracy of the combination model of RBF neural network and particle swarm optimization is greater than that of normal RBF neural network.</description><identifier>ISBN: 9781424455690</identifier><identifier>ISBN: 1424455693</identifier><identifier>ISBN: 1424455855</identifier><identifier>ISBN: 9781424455850</identifier><identifier>EISBN: 9781424455867</identifier><identifier>EISBN: 1424455863</identifier><identifier>DOI: 10.1109/ICCAE.2010.5451386</identifier><identifier>LCCN: 2009938876</identifier><language>eng</language><publisher>IEEE</publisher><subject>Control systems ; Fault diagnosis ; fault test ; Instruments ; Intelligent control ; Intelligent networks ; Laboratories ; networked synchronization control system ; neural network ; Neural networks ; Particle swarm optimization ; System testing ; Telecommunication control</subject><ispartof>2010 The 2nd International Conference on Computer and Automation Engineering (ICCAE), 2010, Vol.3, p.383-386</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5451386$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5451386$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wang, Ting</creatorcontrib><creatorcontrib>Wang, Heng</creatorcontrib><creatorcontrib>Xie, Hao-fei</creatorcontrib><title>Fault test of networked synchronization control system by the combination of RBF neural network and particle swarm optimization</title><title>2010 The 2nd International Conference on Computer and Automation Engineering (ICCAE)</title><addtitle>ICCAE</addtitle><description>Networked synchronization control has very high technology level, which includes network technology and synchronization control technology, etc. Fault diagnosis of the devices in networked synchronization control system has a great importance for ensuring the normal operation. The radial basis function neural network with particle swarm optimization algorithm is developed. The combination method of RBF neural network and particle swarm optimization is applied to fault diagnosis of networked synchronization control system. The test results indicate that the combination model of RBF neural network and particle swarm optimization can almost entirely recognize each state of the device in networked synchronization control system. The diagnostic accuracy of the combination model of RBF neural network and particle swarm optimization is greater than that of normal RBF neural network.</description><subject>Control systems</subject><subject>Fault diagnosis</subject><subject>fault test</subject><subject>Instruments</subject><subject>Intelligent control</subject><subject>Intelligent networks</subject><subject>Laboratories</subject><subject>networked synchronization control system</subject><subject>neural network</subject><subject>Neural networks</subject><subject>Particle swarm optimization</subject><subject>System testing</subject><subject>Telecommunication control</subject><isbn>9781424455690</isbn><isbn>1424455693</isbn><isbn>1424455855</isbn><isbn>9781424455850</isbn><isbn>9781424455867</isbn><isbn>1424455863</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpNkEFLAzEQhSNSUGv_gF7yB1qTbJJNjnVpa6EgiJ5LNpml0d1syaaUevGvG2gF5zK8x7wP3iD0QMmMUqKf1lU1X8wYyVpwQQslr9BEl4pyxrkQSpbX_7XUZITuGCFaF0qV8gZNhuGT5Mlhpfgt-lmaQ5twgiHhvsEB0rGPX-DwcAp2F_vgv03yfcC2Dyn2bfaHBB2uTzjtILtd7cP5IsffnpcZcYim_SNhExzem5i8bQEPRxM73O-T7y7cezRqTDvA5LLH6GO5eK9eppvX1bqab6aeliJNpTUAEhRVYIUmVtFalI41AgrbUO6kLZraKiZ4ru0Ud1TUrGFlWWvmtCXFGD2euR4AtvvoOxNP28sPi19ptmZc</recordid><startdate>201002</startdate><enddate>201002</enddate><creator>Wang, Ting</creator><creator>Wang, Heng</creator><creator>Xie, Hao-fei</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201002</creationdate><title>Fault test of networked synchronization control system by the combination of RBF neural network and particle swarm optimization</title><author>Wang, Ting ; Wang, Heng ; Xie, Hao-fei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-6caee6e818ec590c81b57d2f5e3cf14d6c3fbc8254445d84d15b2f277b92d9c03</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Control systems</topic><topic>Fault diagnosis</topic><topic>fault test</topic><topic>Instruments</topic><topic>Intelligent control</topic><topic>Intelligent networks</topic><topic>Laboratories</topic><topic>networked synchronization control system</topic><topic>neural network</topic><topic>Neural networks</topic><topic>Particle swarm optimization</topic><topic>System testing</topic><topic>Telecommunication control</topic><toplevel>online_resources</toplevel><creatorcontrib>Wang, Ting</creatorcontrib><creatorcontrib>Wang, Heng</creatorcontrib><creatorcontrib>Xie, Hao-fei</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wang, Ting</au><au>Wang, Heng</au><au>Xie, Hao-fei</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Fault test of networked synchronization control system by the combination of RBF neural network and particle swarm optimization</atitle><btitle>2010 The 2nd International Conference on Computer and Automation Engineering (ICCAE)</btitle><stitle>ICCAE</stitle><date>2010-02</date><risdate>2010</risdate><volume>3</volume><spage>383</spage><epage>386</epage><pages>383-386</pages><isbn>9781424455690</isbn><isbn>1424455693</isbn><isbn>1424455855</isbn><isbn>9781424455850</isbn><eisbn>9781424455867</eisbn><eisbn>1424455863</eisbn><abstract>Networked synchronization control has very high technology level, which includes network technology and synchronization control technology, etc. Fault diagnosis of the devices in networked synchronization control system has a great importance for ensuring the normal operation. The radial basis function neural network with particle swarm optimization algorithm is developed. The combination method of RBF neural network and particle swarm optimization is applied to fault diagnosis of networked synchronization control system. The test results indicate that the combination model of RBF neural network and particle swarm optimization can almost entirely recognize each state of the device in networked synchronization control system. The diagnostic accuracy of the combination model of RBF neural network and particle swarm optimization is greater than that of normal RBF neural network.</abstract><pub>IEEE</pub><doi>10.1109/ICCAE.2010.5451386</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9781424455690
ispartof 2010 The 2nd International Conference on Computer and Automation Engineering (ICCAE), 2010, Vol.3, p.383-386
issn
language eng
recordid cdi_ieee_primary_5451386
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Control systems
Fault diagnosis
fault test
Instruments
Intelligent control
Intelligent networks
Laboratories
networked synchronization control system
neural network
Neural networks
Particle swarm optimization
System testing
Telecommunication control
title Fault test of networked synchronization control system by the combination of RBF neural network and particle swarm optimization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T20%3A43%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Fault%20test%20of%20networked%20synchronization%20control%20system%20by%20the%20combination%20of%20RBF%20neural%20network%20and%20particle%20swarm%20optimization&rft.btitle=2010%20The%202nd%20International%20Conference%20on%20Computer%20and%20Automation%20Engineering%20(ICCAE)&rft.au=Wang,%20Ting&rft.date=2010-02&rft.volume=3&rft.spage=383&rft.epage=386&rft.pages=383-386&rft.isbn=9781424455690&rft.isbn_list=1424455693&rft.isbn_list=1424455855&rft.isbn_list=9781424455850&rft_id=info:doi/10.1109/ICCAE.2010.5451386&rft_dat=%3Cieee_6IE%3E5451386%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424455867&rft.eisbn_list=1424455863&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5451386&rfr_iscdi=true