Fabrication of a Polymeric Optical Waveguide-On-Flex Using Electrostatic-Induced Lithography
A method has been developed for the manufacture of polymeric multimode waveguides using an electrostatic field-induced self assembly and pattern formation process. A spin-coated liquid optical polymer placed between two conductive plates experiences an electrostatic force from an applied electric fi...
Gespeichert in:
Veröffentlicht in: | IEEE photonics technology letters 2010-07, Vol.22 (13), p.957-959 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 959 |
---|---|
container_issue | 13 |
container_start_page | 957 |
container_title | IEEE photonics technology letters |
container_volume | 22 |
creator | Tze Yang Hin Changqing Liu Conway, Paul P Weixing Yu Cargill, Scott Desmulliez, Marc P Y |
description | A method has been developed for the manufacture of polymeric multimode waveguides using an electrostatic field-induced self assembly and pattern formation process. A spin-coated liquid optical polymer placed between two conductive plates experiences an electrostatic force from an applied electric field gradient across the plates. Surface electrohydrodynamics instability patterning is employed to fabricate optical core microstructures using a patterned master plate. The result shows a good replication of the pattern from the master plate to the optical polymer. The process protocols were defined to achieve waveguides with low sidewall roughness together with an optical coupling interface. We have demonstrated multimode waveguide arrays with a 50 μm × 50 μm cross section and 250-μm pitch on a 10 mm × 10 mm flexible substrate. The refractive index and absorption measurement of the electrostatic-induced optical film show insignificant changes when compared with the unexposed film. Using the cutback approach, the propagation loss of the waveguide is measured at -1.97 dB/cm. The whole fabrication process is found to be fast, cost-effective, and no photosensitive material is needed as in the conventional photolithography approach. |
doi_str_mv | 10.1109/LPT.2010.2048310 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_5451055</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5451055</ieee_id><sourcerecordid>2775907011</sourcerecordid><originalsourceid>FETCH-LOGICAL-c365t-4400e16d0590138ec7f35049e74de9b6d55b44886d68d09ed9294e7acb21c58f3</originalsourceid><addsrcrecordid>eNpdkE1Lw0AQhoMoWKt3wUvAg6fUmexuPo5SWi0E2kOLFyFsdiftljSJ2UTsv3dLxYOnnZ153vl4Pe8eYYII6XO2Wk9CcL8QeMIQLrwRphwDwJhfuhhcjMjEtXdj7R4AuWB85H3MZdEZJXvT1H5T-tJfNdXxQC7nL9veVSr_XX7RdjCagmUdzCv69jfW1Ft_VpHqu8b2Tq2CRa0HRdrPTL9rtp1sd8db76qUlaW733fsbeaz9fQtyJavi-lLFigWiT7gHIAw0iBSQJaQiksmgKcUc01pEWkhCs6TJNJRoiElnYYpp1iqIkQlkpKNvadz37ZrPgeyfX4wVlFVyZqaweaxYFGCQjBHPv4j983Q1W65HCHBSIgQIkfBmVLuOttRmbedOcju6KD85Hbu3M5Pbue_bjvJw1liiOgPF1wguLk_Bs96Fg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1081655206</pqid></control><display><type>article</type><title>Fabrication of a Polymeric Optical Waveguide-On-Flex Using Electrostatic-Induced Lithography</title><source>IEEE Electronic Library (IEL)</source><creator>Tze Yang Hin ; Changqing Liu ; Conway, Paul P ; Weixing Yu ; Cargill, Scott ; Desmulliez, Marc P Y</creator><creatorcontrib>Tze Yang Hin ; Changqing Liu ; Conway, Paul P ; Weixing Yu ; Cargill, Scott ; Desmulliez, Marc P Y</creatorcontrib><description>A method has been developed for the manufacture of polymeric multimode waveguides using an electrostatic field-induced self assembly and pattern formation process. A spin-coated liquid optical polymer placed between two conductive plates experiences an electrostatic force from an applied electric field gradient across the plates. Surface electrohydrodynamics instability patterning is employed to fabricate optical core microstructures using a patterned master plate. The result shows a good replication of the pattern from the master plate to the optical polymer. The process protocols were defined to achieve waveguides with low sidewall roughness together with an optical coupling interface. We have demonstrated multimode waveguide arrays with a 50 μm × 50 μm cross section and 250-μm pitch on a 10 mm × 10 mm flexible substrate. The refractive index and absorption measurement of the electrostatic-induced optical film show insignificant changes when compared with the unexposed film. Using the cutback approach, the propagation loss of the waveguide is measured at -1.97 dB/cm. The whole fabrication process is found to be fast, cost-effective, and no photosensitive material is needed as in the conventional photolithography approach.</description><identifier>ISSN: 1041-1135</identifier><identifier>EISSN: 1941-0174</identifier><identifier>DOI: 10.1109/LPT.2010.2048310</identifier><identifier>CODEN: IPTLEL</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Analytical chemistry ; Arrays ; Conferences ; Electric fields ; Electrostatic measurements ; Electrostatic-induced lithography ; Electrostatics ; Fiber optics ; flexible substrate ; Lithography ; Manufacturing processes ; optical core patterning ; Optical device fabrication ; Optical fibers ; Optical films ; Optical polymers ; Optical refraction ; Optical variables control ; Optical waveguide components ; Optical waveguides ; Plates ; polymer waveguide ; Polymers ; Waveguides</subject><ispartof>IEEE photonics technology letters, 2010-07, Vol.22 (13), p.957-959</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2010</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c365t-4400e16d0590138ec7f35049e74de9b6d55b44886d68d09ed9294e7acb21c58f3</citedby><cites>FETCH-LOGICAL-c365t-4400e16d0590138ec7f35049e74de9b6d55b44886d68d09ed9294e7acb21c58f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5451055$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5451055$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Tze Yang Hin</creatorcontrib><creatorcontrib>Changqing Liu</creatorcontrib><creatorcontrib>Conway, Paul P</creatorcontrib><creatorcontrib>Weixing Yu</creatorcontrib><creatorcontrib>Cargill, Scott</creatorcontrib><creatorcontrib>Desmulliez, Marc P Y</creatorcontrib><title>Fabrication of a Polymeric Optical Waveguide-On-Flex Using Electrostatic-Induced Lithography</title><title>IEEE photonics technology letters</title><addtitle>LPT</addtitle><description>A method has been developed for the manufacture of polymeric multimode waveguides using an electrostatic field-induced self assembly and pattern formation process. A spin-coated liquid optical polymer placed between two conductive plates experiences an electrostatic force from an applied electric field gradient across the plates. Surface electrohydrodynamics instability patterning is employed to fabricate optical core microstructures using a patterned master plate. The result shows a good replication of the pattern from the master plate to the optical polymer. The process protocols were defined to achieve waveguides with low sidewall roughness together with an optical coupling interface. We have demonstrated multimode waveguide arrays with a 50 μm × 50 μm cross section and 250-μm pitch on a 10 mm × 10 mm flexible substrate. The refractive index and absorption measurement of the electrostatic-induced optical film show insignificant changes when compared with the unexposed film. Using the cutback approach, the propagation loss of the waveguide is measured at -1.97 dB/cm. The whole fabrication process is found to be fast, cost-effective, and no photosensitive material is needed as in the conventional photolithography approach.</description><subject>Analytical chemistry</subject><subject>Arrays</subject><subject>Conferences</subject><subject>Electric fields</subject><subject>Electrostatic measurements</subject><subject>Electrostatic-induced lithography</subject><subject>Electrostatics</subject><subject>Fiber optics</subject><subject>flexible substrate</subject><subject>Lithography</subject><subject>Manufacturing processes</subject><subject>optical core patterning</subject><subject>Optical device fabrication</subject><subject>Optical fibers</subject><subject>Optical films</subject><subject>Optical polymers</subject><subject>Optical refraction</subject><subject>Optical variables control</subject><subject>Optical waveguide components</subject><subject>Optical waveguides</subject><subject>Plates</subject><subject>polymer waveguide</subject><subject>Polymers</subject><subject>Waveguides</subject><issn>1041-1135</issn><issn>1941-0174</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE1Lw0AQhoMoWKt3wUvAg6fUmexuPo5SWi0E2kOLFyFsdiftljSJ2UTsv3dLxYOnnZ153vl4Pe8eYYII6XO2Wk9CcL8QeMIQLrwRphwDwJhfuhhcjMjEtXdj7R4AuWB85H3MZdEZJXvT1H5T-tJfNdXxQC7nL9veVSr_XX7RdjCagmUdzCv69jfW1Ft_VpHqu8b2Tq2CRa0HRdrPTL9rtp1sd8db76qUlaW733fsbeaz9fQtyJavi-lLFigWiT7gHIAw0iBSQJaQiksmgKcUc01pEWkhCs6TJNJRoiElnYYpp1iqIkQlkpKNvadz37ZrPgeyfX4wVlFVyZqaweaxYFGCQjBHPv4j983Q1W65HCHBSIgQIkfBmVLuOttRmbedOcju6KD85Hbu3M5Pbue_bjvJw1liiOgPF1wguLk_Bs96Fg</recordid><startdate>20100701</startdate><enddate>20100701</enddate><creator>Tze Yang Hin</creator><creator>Changqing Liu</creator><creator>Conway, Paul P</creator><creator>Weixing Yu</creator><creator>Cargill, Scott</creator><creator>Desmulliez, Marc P Y</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20100701</creationdate><title>Fabrication of a Polymeric Optical Waveguide-On-Flex Using Electrostatic-Induced Lithography</title><author>Tze Yang Hin ; Changqing Liu ; Conway, Paul P ; Weixing Yu ; Cargill, Scott ; Desmulliez, Marc P Y</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c365t-4400e16d0590138ec7f35049e74de9b6d55b44886d68d09ed9294e7acb21c58f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Analytical chemistry</topic><topic>Arrays</topic><topic>Conferences</topic><topic>Electric fields</topic><topic>Electrostatic measurements</topic><topic>Electrostatic-induced lithography</topic><topic>Electrostatics</topic><topic>Fiber optics</topic><topic>flexible substrate</topic><topic>Lithography</topic><topic>Manufacturing processes</topic><topic>optical core patterning</topic><topic>Optical device fabrication</topic><topic>Optical fibers</topic><topic>Optical films</topic><topic>Optical polymers</topic><topic>Optical refraction</topic><topic>Optical variables control</topic><topic>Optical waveguide components</topic><topic>Optical waveguides</topic><topic>Plates</topic><topic>polymer waveguide</topic><topic>Polymers</topic><topic>Waveguides</topic><toplevel>online_resources</toplevel><creatorcontrib>Tze Yang Hin</creatorcontrib><creatorcontrib>Changqing Liu</creatorcontrib><creatorcontrib>Conway, Paul P</creatorcontrib><creatorcontrib>Weixing Yu</creatorcontrib><creatorcontrib>Cargill, Scott</creatorcontrib><creatorcontrib>Desmulliez, Marc P Y</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE photonics technology letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tze Yang Hin</au><au>Changqing Liu</au><au>Conway, Paul P</au><au>Weixing Yu</au><au>Cargill, Scott</au><au>Desmulliez, Marc P Y</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fabrication of a Polymeric Optical Waveguide-On-Flex Using Electrostatic-Induced Lithography</atitle><jtitle>IEEE photonics technology letters</jtitle><stitle>LPT</stitle><date>2010-07-01</date><risdate>2010</risdate><volume>22</volume><issue>13</issue><spage>957</spage><epage>959</epage><pages>957-959</pages><issn>1041-1135</issn><eissn>1941-0174</eissn><coden>IPTLEL</coden><abstract>A method has been developed for the manufacture of polymeric multimode waveguides using an electrostatic field-induced self assembly and pattern formation process. A spin-coated liquid optical polymer placed between two conductive plates experiences an electrostatic force from an applied electric field gradient across the plates. Surface electrohydrodynamics instability patterning is employed to fabricate optical core microstructures using a patterned master plate. The result shows a good replication of the pattern from the master plate to the optical polymer. The process protocols were defined to achieve waveguides with low sidewall roughness together with an optical coupling interface. We have demonstrated multimode waveguide arrays with a 50 μm × 50 μm cross section and 250-μm pitch on a 10 mm × 10 mm flexible substrate. The refractive index and absorption measurement of the electrostatic-induced optical film show insignificant changes when compared with the unexposed film. Using the cutback approach, the propagation loss of the waveguide is measured at -1.97 dB/cm. The whole fabrication process is found to be fast, cost-effective, and no photosensitive material is needed as in the conventional photolithography approach.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/LPT.2010.2048310</doi><tpages>3</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1041-1135 |
ispartof | IEEE photonics technology letters, 2010-07, Vol.22 (13), p.957-959 |
issn | 1041-1135 1941-0174 |
language | eng |
recordid | cdi_ieee_primary_5451055 |
source | IEEE Electronic Library (IEL) |
subjects | Analytical chemistry Arrays Conferences Electric fields Electrostatic measurements Electrostatic-induced lithography Electrostatics Fiber optics flexible substrate Lithography Manufacturing processes optical core patterning Optical device fabrication Optical fibers Optical films Optical polymers Optical refraction Optical variables control Optical waveguide components Optical waveguides Plates polymer waveguide Polymers Waveguides |
title | Fabrication of a Polymeric Optical Waveguide-On-Flex Using Electrostatic-Induced Lithography |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T14%3A58%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fabrication%20of%20a%20Polymeric%20Optical%20Waveguide-On-Flex%20Using%20Electrostatic-Induced%20Lithography&rft.jtitle=IEEE%20photonics%20technology%20letters&rft.au=Tze%20Yang%20Hin&rft.date=2010-07-01&rft.volume=22&rft.issue=13&rft.spage=957&rft.epage=959&rft.pages=957-959&rft.issn=1041-1135&rft.eissn=1941-0174&rft.coden=IPTLEL&rft_id=info:doi/10.1109/LPT.2010.2048310&rft_dat=%3Cproquest_RIE%3E2775907011%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1081655206&rft_id=info:pmid/&rft_ieee_id=5451055&rfr_iscdi=true |