Hive - a petabyte scale data warehouse using Hadoop

The size of data sets being collected and analyzed in the industry for business intelligence is growing rapidly, making traditional warehousing solutions prohibitively expensive. Hadoop is a popular open-source map-reduce implementation which is being used in companies like Yahoo, Facebook etc. to s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Thusoo, Ashish, Sarma, Joydeep Sen, Jain, Namit, Zheng Shao, Chakka, Prasad, Ning Zhang, Antony, Suresh, Hao Liu, Murthy, Raghotham
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1005
container_issue
container_start_page 996
container_title
container_volume
creator Thusoo, Ashish
Sarma, Joydeep Sen
Jain, Namit
Zheng Shao
Chakka, Prasad
Ning Zhang
Antony, Suresh
Hao Liu
Murthy, Raghotham
description The size of data sets being collected and analyzed in the industry for business intelligence is growing rapidly, making traditional warehousing solutions prohibitively expensive. Hadoop is a popular open-source map-reduce implementation which is being used in companies like Yahoo, Facebook etc. to store and process extremely large data sets on commodity hardware. However, the map-reduce programming model is very low level and requires developers to write custom programs which are hard to maintain and reuse. In this paper, we present Hive, an open-source data warehousing solution built on top of Hadoop. Hive supports queries expressed in a SQL-like declarative language - HiveQL, which are compiled into map-reduce jobs that are executed using Hadoop. In addition, HiveQL enables users to plug in custom map-reduce scripts into queries. The language includes a type system with support for tables containing primitive types, collections like arrays and maps, and nested compositions of the same. The underlying IO libraries can be extended to query data in custom formats. Hive also includes a system catalog - Metastore - that contains schemas and statistics, which are useful in data exploration, query optimization and query compilation. In Facebook, the Hive warehouse contains tens of thousands of tables and stores over 700TB of data and is being used extensively for both reporting and ad-hoc analyses by more than 200 users per month.
doi_str_mv 10.1109/ICDE.2010.5447738
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5447738</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5447738</ieee_id><sourcerecordid>5447738</sourcerecordid><originalsourceid>FETCH-LOGICAL-c223t-6a861846e59bdfbbafa51ceda1e4cc08130490cc4ece34eed1df247bc30928c33</originalsourceid><addsrcrecordid>eNpFj81Kw0AUhcc_MNY-gLiZF0idO3MnmSwlVlMouFHortzM3GikmpBJlb69AQuezeHjgwNHiBtQCwBV3K3Kh-VCqwktYp4bdyKuADXihAinItEmt6nS2ebsX9jNuUhAZSbNjNOXYh7jh5pSIIBViTBV-80ylSR7Hqk-jCyjpx3LQCPJHxr4vdtHlvvYfr3JikLX9dfioqFd5PmxZ-L1cflSVun6-WlV3q9Tr7UZ04xcBg4ztkUdmrqmhix4DgSM3isHRmGhvEf2bJA5QGg05rU3qtDOGzMTt3-7LTNv-6H9pOGwPZ43v4feSNw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Hive - a petabyte scale data warehouse using Hadoop</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Thusoo, Ashish ; Sarma, Joydeep Sen ; Jain, Namit ; Zheng Shao ; Chakka, Prasad ; Ning Zhang ; Antony, Suresh ; Hao Liu ; Murthy, Raghotham</creator><creatorcontrib>Thusoo, Ashish ; Sarma, Joydeep Sen ; Jain, Namit ; Zheng Shao ; Chakka, Prasad ; Ning Zhang ; Antony, Suresh ; Hao Liu ; Murthy, Raghotham</creatorcontrib><description>The size of data sets being collected and analyzed in the industry for business intelligence is growing rapidly, making traditional warehousing solutions prohibitively expensive. Hadoop is a popular open-source map-reduce implementation which is being used in companies like Yahoo, Facebook etc. to store and process extremely large data sets on commodity hardware. However, the map-reduce programming model is very low level and requires developers to write custom programs which are hard to maintain and reuse. In this paper, we present Hive, an open-source data warehousing solution built on top of Hadoop. Hive supports queries expressed in a SQL-like declarative language - HiveQL, which are compiled into map-reduce jobs that are executed using Hadoop. In addition, HiveQL enables users to plug in custom map-reduce scripts into queries. The language includes a type system with support for tables containing primitive types, collections like arrays and maps, and nested compositions of the same. The underlying IO libraries can be extended to query data in custom formats. Hive also includes a system catalog - Metastore - that contains schemas and statistics, which are useful in data exploration, query optimization and query compilation. In Facebook, the Hive warehouse contains tens of thousands of tables and stores over 700TB of data and is being used extensively for both reporting and ad-hoc analyses by more than 200 users per month.</description><identifier>ISSN: 1063-6382</identifier><identifier>ISBN: 142445445X</identifier><identifier>ISBN: 9781424454457</identifier><identifier>EISSN: 2375-026X</identifier><identifier>EISBN: 1424454441</identifier><identifier>EISBN: 1424454468</identifier><identifier>EISBN: 9781424454440</identifier><identifier>EISBN: 9781424454464</identifier><identifier>DOI: 10.1109/ICDE.2010.5447738</identifier><language>eng</language><publisher>IEEE</publisher><subject>Companies ; Data warehouses ; Facebook ; Hardware ; Libraries ; Open source software ; Plugs ; Query processing ; Statistics ; Warehousing</subject><ispartof>2010 IEEE 26th International Conference on Data Engineering (ICDE 2010), 2010, p.996-1005</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c223t-6a861846e59bdfbbafa51ceda1e4cc08130490cc4ece34eed1df247bc30928c33</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5447738$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5447738$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Thusoo, Ashish</creatorcontrib><creatorcontrib>Sarma, Joydeep Sen</creatorcontrib><creatorcontrib>Jain, Namit</creatorcontrib><creatorcontrib>Zheng Shao</creatorcontrib><creatorcontrib>Chakka, Prasad</creatorcontrib><creatorcontrib>Ning Zhang</creatorcontrib><creatorcontrib>Antony, Suresh</creatorcontrib><creatorcontrib>Hao Liu</creatorcontrib><creatorcontrib>Murthy, Raghotham</creatorcontrib><title>Hive - a petabyte scale data warehouse using Hadoop</title><title>2010 IEEE 26th International Conference on Data Engineering (ICDE 2010)</title><addtitle>ICDE</addtitle><description>The size of data sets being collected and analyzed in the industry for business intelligence is growing rapidly, making traditional warehousing solutions prohibitively expensive. Hadoop is a popular open-source map-reduce implementation which is being used in companies like Yahoo, Facebook etc. to store and process extremely large data sets on commodity hardware. However, the map-reduce programming model is very low level and requires developers to write custom programs which are hard to maintain and reuse. In this paper, we present Hive, an open-source data warehousing solution built on top of Hadoop. Hive supports queries expressed in a SQL-like declarative language - HiveQL, which are compiled into map-reduce jobs that are executed using Hadoop. In addition, HiveQL enables users to plug in custom map-reduce scripts into queries. The language includes a type system with support for tables containing primitive types, collections like arrays and maps, and nested compositions of the same. The underlying IO libraries can be extended to query data in custom formats. Hive also includes a system catalog - Metastore - that contains schemas and statistics, which are useful in data exploration, query optimization and query compilation. In Facebook, the Hive warehouse contains tens of thousands of tables and stores over 700TB of data and is being used extensively for both reporting and ad-hoc analyses by more than 200 users per month.</description><subject>Companies</subject><subject>Data warehouses</subject><subject>Facebook</subject><subject>Hardware</subject><subject>Libraries</subject><subject>Open source software</subject><subject>Plugs</subject><subject>Query processing</subject><subject>Statistics</subject><subject>Warehousing</subject><issn>1063-6382</issn><issn>2375-026X</issn><isbn>142445445X</isbn><isbn>9781424454457</isbn><isbn>1424454441</isbn><isbn>1424454468</isbn><isbn>9781424454440</isbn><isbn>9781424454464</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFj81Kw0AUhcc_MNY-gLiZF0idO3MnmSwlVlMouFHortzM3GikmpBJlb69AQuezeHjgwNHiBtQCwBV3K3Kh-VCqwktYp4bdyKuADXihAinItEmt6nS2ebsX9jNuUhAZSbNjNOXYh7jh5pSIIBViTBV-80ylSR7Hqk-jCyjpx3LQCPJHxr4vdtHlvvYfr3JikLX9dfioqFd5PmxZ-L1cflSVun6-WlV3q9Tr7UZ04xcBg4ztkUdmrqmhix4DgSM3isHRmGhvEf2bJA5QGg05rU3qtDOGzMTt3-7LTNv-6H9pOGwPZ43v4feSNw</recordid><startdate>201003</startdate><enddate>201003</enddate><creator>Thusoo, Ashish</creator><creator>Sarma, Joydeep Sen</creator><creator>Jain, Namit</creator><creator>Zheng Shao</creator><creator>Chakka, Prasad</creator><creator>Ning Zhang</creator><creator>Antony, Suresh</creator><creator>Hao Liu</creator><creator>Murthy, Raghotham</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201003</creationdate><title>Hive - a petabyte scale data warehouse using Hadoop</title><author>Thusoo, Ashish ; Sarma, Joydeep Sen ; Jain, Namit ; Zheng Shao ; Chakka, Prasad ; Ning Zhang ; Antony, Suresh ; Hao Liu ; Murthy, Raghotham</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c223t-6a861846e59bdfbbafa51ceda1e4cc08130490cc4ece34eed1df247bc30928c33</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Companies</topic><topic>Data warehouses</topic><topic>Facebook</topic><topic>Hardware</topic><topic>Libraries</topic><topic>Open source software</topic><topic>Plugs</topic><topic>Query processing</topic><topic>Statistics</topic><topic>Warehousing</topic><toplevel>online_resources</toplevel><creatorcontrib>Thusoo, Ashish</creatorcontrib><creatorcontrib>Sarma, Joydeep Sen</creatorcontrib><creatorcontrib>Jain, Namit</creatorcontrib><creatorcontrib>Zheng Shao</creatorcontrib><creatorcontrib>Chakka, Prasad</creatorcontrib><creatorcontrib>Ning Zhang</creatorcontrib><creatorcontrib>Antony, Suresh</creatorcontrib><creatorcontrib>Hao Liu</creatorcontrib><creatorcontrib>Murthy, Raghotham</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Thusoo, Ashish</au><au>Sarma, Joydeep Sen</au><au>Jain, Namit</au><au>Zheng Shao</au><au>Chakka, Prasad</au><au>Ning Zhang</au><au>Antony, Suresh</au><au>Hao Liu</au><au>Murthy, Raghotham</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Hive - a petabyte scale data warehouse using Hadoop</atitle><btitle>2010 IEEE 26th International Conference on Data Engineering (ICDE 2010)</btitle><stitle>ICDE</stitle><date>2010-03</date><risdate>2010</risdate><spage>996</spage><epage>1005</epage><pages>996-1005</pages><issn>1063-6382</issn><eissn>2375-026X</eissn><isbn>142445445X</isbn><isbn>9781424454457</isbn><eisbn>1424454441</eisbn><eisbn>1424454468</eisbn><eisbn>9781424454440</eisbn><eisbn>9781424454464</eisbn><abstract>The size of data sets being collected and analyzed in the industry for business intelligence is growing rapidly, making traditional warehousing solutions prohibitively expensive. Hadoop is a popular open-source map-reduce implementation which is being used in companies like Yahoo, Facebook etc. to store and process extremely large data sets on commodity hardware. However, the map-reduce programming model is very low level and requires developers to write custom programs which are hard to maintain and reuse. In this paper, we present Hive, an open-source data warehousing solution built on top of Hadoop. Hive supports queries expressed in a SQL-like declarative language - HiveQL, which are compiled into map-reduce jobs that are executed using Hadoop. In addition, HiveQL enables users to plug in custom map-reduce scripts into queries. The language includes a type system with support for tables containing primitive types, collections like arrays and maps, and nested compositions of the same. The underlying IO libraries can be extended to query data in custom formats. Hive also includes a system catalog - Metastore - that contains schemas and statistics, which are useful in data exploration, query optimization and query compilation. In Facebook, the Hive warehouse contains tens of thousands of tables and stores over 700TB of data and is being used extensively for both reporting and ad-hoc analyses by more than 200 users per month.</abstract><pub>IEEE</pub><doi>10.1109/ICDE.2010.5447738</doi><tpages>10</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1063-6382
ispartof 2010 IEEE 26th International Conference on Data Engineering (ICDE 2010), 2010, p.996-1005
issn 1063-6382
2375-026X
language eng
recordid cdi_ieee_primary_5447738
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Companies
Data warehouses
Facebook
Hardware
Libraries
Open source software
Plugs
Query processing
Statistics
Warehousing
title Hive - a petabyte scale data warehouse using Hadoop
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T11%3A56%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Hive%20-%20a%20petabyte%20scale%20data%20warehouse%20using%20Hadoop&rft.btitle=2010%20IEEE%2026th%20International%20Conference%20on%20Data%20Engineering%20(ICDE%202010)&rft.au=Thusoo,%20Ashish&rft.date=2010-03&rft.spage=996&rft.epage=1005&rft.pages=996-1005&rft.issn=1063-6382&rft.eissn=2375-026X&rft.isbn=142445445X&rft.isbn_list=9781424454457&rft_id=info:doi/10.1109/ICDE.2010.5447738&rft_dat=%3Cieee_6IE%3E5447738%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424454441&rft.eisbn_list=1424454468&rft.eisbn_list=9781424454440&rft.eisbn_list=9781424454464&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5447738&rfr_iscdi=true