On choosing quaternion equilibrium point in attitude stabilization

Due to the parametrization of the attitude for closed loop rigid body systems we either encounter an inherent geometric singularity using Euler representation, or obtain dual equilibrium points using the unit quaternion. In order to save energy during attitude maneuvers the choice of equilibrium poi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Schlanbusch, Rune, Kristiansen, Raymond, Nicklasson, Per J
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6
container_issue
container_start_page 1
container_title
container_volume
creator Schlanbusch, Rune
Kristiansen, Raymond
Nicklasson, Per J
description Due to the parametrization of the attitude for closed loop rigid body systems we either encounter an inherent geometric singularity using Euler representation, or obtain dual equilibrium points using the unit quaternion. In order to save energy during attitude maneuvers the choice of equilibrium point and thus rotational direction is imperative for quaternion feedback systems. Normally the shortest rotation is preferred, but in this paper we present schemes where both initial attitude and angular velocity are considered for choosing the preferable rotational direction for a rigid body, thus taking advantage of the initial angular velocity. The solution is based on a set of simple rules where two initial parameters are analyzed and the sign of the solution decides which rotational direction is preferable. The check is not computationally consuming, and may therefore be implemented on i.e. a spacecraft where computational resources are limited. When the preferable equilibrium is chosen, it is kept throughout the maneuver. A tracking controller is derived, resulting in uniform asymptotic stability for both equilibrium points, and the performance of our results are shown through a large number of simulations using randomized initial values.
doi_str_mv 10.1109/AERO.2010.5446731
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5446731</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5446731</ieee_id><sourcerecordid>5446731</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-d3db125c689f4b75097f7ec210a818fbe81b98b514b35b83b097860d1bb515af3</originalsourceid><addsrcrecordid>eNo1UMlOwzAUNJtEKPkAxMU_4OLnJbaPpSqLVCkSAolbZScOGLVOmzgH-HosUeYymkVzGIRugM4BqLlbrF7qOaNZSiEqxeEEXYFgQnCdcYoKZkxFGJf6DJVG6f9MqXNU5AFJOOPvl6gcxy-aISQYIwp0X0fcfPb9GOIHPkw2-SGGPmJ_mMI2uCFMO7zvQ0w4RGxTCmlqPR6TdTn-sSl3r9FFZ7ejL488Q28Pq9flE1nXj8_LxZoEUDKRlrcOmGwqbTrhlKRGdco3DKjVoDvnNTijnQThuHSau1zQFW3BZU_ajs_Q7d9u8N5v9kPY2eF7c7yD_wJ6M0_S</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>On choosing quaternion equilibrium point in attitude stabilization</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Schlanbusch, Rune ; Kristiansen, Raymond ; Nicklasson, Per J</creator><creatorcontrib>Schlanbusch, Rune ; Kristiansen, Raymond ; Nicklasson, Per J</creatorcontrib><description>Due to the parametrization of the attitude for closed loop rigid body systems we either encounter an inherent geometric singularity using Euler representation, or obtain dual equilibrium points using the unit quaternion. In order to save energy during attitude maneuvers the choice of equilibrium point and thus rotational direction is imperative for quaternion feedback systems. Normally the shortest rotation is preferred, but in this paper we present schemes where both initial attitude and angular velocity are considered for choosing the preferable rotational direction for a rigid body, thus taking advantage of the initial angular velocity. The solution is based on a set of simple rules where two initial parameters are analyzed and the sign of the solution decides which rotational direction is preferable. The check is not computationally consuming, and may therefore be implemented on i.e. a spacecraft where computational resources are limited. When the preferable equilibrium is chosen, it is kept throughout the maneuver. A tracking controller is derived, resulting in uniform asymptotic stability for both equilibrium points, and the performance of our results are shown through a large number of simulations using randomized initial values.</description><identifier>ISSN: 1095-323X</identifier><identifier>ISBN: 9781424438877</identifier><identifier>ISBN: 142443887X</identifier><identifier>EISSN: 2996-2358</identifier><identifier>EISBN: 1424438888</identifier><identifier>EISBN: 9781424438884</identifier><identifier>DOI: 10.1109/AERO.2010.5446731</identifier><language>eng</language><publisher>IEEE</publisher><subject>Angular velocity ; Computer science ; Educational institutions ; Feedback ; Orbital robotics ; Quaternions ; Robot control ; Space technology ; Space vehicles ; Torque control</subject><ispartof>2010 IEEE Aerospace Conference, 2010, p.1-6</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5446731$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5446731$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Schlanbusch, Rune</creatorcontrib><creatorcontrib>Kristiansen, Raymond</creatorcontrib><creatorcontrib>Nicklasson, Per J</creatorcontrib><title>On choosing quaternion equilibrium point in attitude stabilization</title><title>2010 IEEE Aerospace Conference</title><addtitle>AERO</addtitle><description>Due to the parametrization of the attitude for closed loop rigid body systems we either encounter an inherent geometric singularity using Euler representation, or obtain dual equilibrium points using the unit quaternion. In order to save energy during attitude maneuvers the choice of equilibrium point and thus rotational direction is imperative for quaternion feedback systems. Normally the shortest rotation is preferred, but in this paper we present schemes where both initial attitude and angular velocity are considered for choosing the preferable rotational direction for a rigid body, thus taking advantage of the initial angular velocity. The solution is based on a set of simple rules where two initial parameters are analyzed and the sign of the solution decides which rotational direction is preferable. The check is not computationally consuming, and may therefore be implemented on i.e. a spacecraft where computational resources are limited. When the preferable equilibrium is chosen, it is kept throughout the maneuver. A tracking controller is derived, resulting in uniform asymptotic stability for both equilibrium points, and the performance of our results are shown through a large number of simulations using randomized initial values.</description><subject>Angular velocity</subject><subject>Computer science</subject><subject>Educational institutions</subject><subject>Feedback</subject><subject>Orbital robotics</subject><subject>Quaternions</subject><subject>Robot control</subject><subject>Space technology</subject><subject>Space vehicles</subject><subject>Torque control</subject><issn>1095-323X</issn><issn>2996-2358</issn><isbn>9781424438877</isbn><isbn>142443887X</isbn><isbn>1424438888</isbn><isbn>9781424438884</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1UMlOwzAUNJtEKPkAxMU_4OLnJbaPpSqLVCkSAolbZScOGLVOmzgH-HosUeYymkVzGIRugM4BqLlbrF7qOaNZSiEqxeEEXYFgQnCdcYoKZkxFGJf6DJVG6f9MqXNU5AFJOOPvl6gcxy-aISQYIwp0X0fcfPb9GOIHPkw2-SGGPmJ_mMI2uCFMO7zvQ0w4RGxTCmlqPR6TdTn-sSl3r9FFZ7ejL488Q28Pq9flE1nXj8_LxZoEUDKRlrcOmGwqbTrhlKRGdco3DKjVoDvnNTijnQThuHSau1zQFW3BZU_ajs_Q7d9u8N5v9kPY2eF7c7yD_wJ6M0_S</recordid><startdate>201003</startdate><enddate>201003</enddate><creator>Schlanbusch, Rune</creator><creator>Kristiansen, Raymond</creator><creator>Nicklasson, Per J</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201003</creationdate><title>On choosing quaternion equilibrium point in attitude stabilization</title><author>Schlanbusch, Rune ; Kristiansen, Raymond ; Nicklasson, Per J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-d3db125c689f4b75097f7ec210a818fbe81b98b514b35b83b097860d1bb515af3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Angular velocity</topic><topic>Computer science</topic><topic>Educational institutions</topic><topic>Feedback</topic><topic>Orbital robotics</topic><topic>Quaternions</topic><topic>Robot control</topic><topic>Space technology</topic><topic>Space vehicles</topic><topic>Torque control</topic><toplevel>online_resources</toplevel><creatorcontrib>Schlanbusch, Rune</creatorcontrib><creatorcontrib>Kristiansen, Raymond</creatorcontrib><creatorcontrib>Nicklasson, Per J</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Schlanbusch, Rune</au><au>Kristiansen, Raymond</au><au>Nicklasson, Per J</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>On choosing quaternion equilibrium point in attitude stabilization</atitle><btitle>2010 IEEE Aerospace Conference</btitle><stitle>AERO</stitle><date>2010-03</date><risdate>2010</risdate><spage>1</spage><epage>6</epage><pages>1-6</pages><issn>1095-323X</issn><eissn>2996-2358</eissn><isbn>9781424438877</isbn><isbn>142443887X</isbn><eisbn>1424438888</eisbn><eisbn>9781424438884</eisbn><abstract>Due to the parametrization of the attitude for closed loop rigid body systems we either encounter an inherent geometric singularity using Euler representation, or obtain dual equilibrium points using the unit quaternion. In order to save energy during attitude maneuvers the choice of equilibrium point and thus rotational direction is imperative for quaternion feedback systems. Normally the shortest rotation is preferred, but in this paper we present schemes where both initial attitude and angular velocity are considered for choosing the preferable rotational direction for a rigid body, thus taking advantage of the initial angular velocity. The solution is based on a set of simple rules where two initial parameters are analyzed and the sign of the solution decides which rotational direction is preferable. The check is not computationally consuming, and may therefore be implemented on i.e. a spacecraft where computational resources are limited. When the preferable equilibrium is chosen, it is kept throughout the maneuver. A tracking controller is derived, resulting in uniform asymptotic stability for both equilibrium points, and the performance of our results are shown through a large number of simulations using randomized initial values.</abstract><pub>IEEE</pub><doi>10.1109/AERO.2010.5446731</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1095-323X
ispartof 2010 IEEE Aerospace Conference, 2010, p.1-6
issn 1095-323X
2996-2358
language eng
recordid cdi_ieee_primary_5446731
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Angular velocity
Computer science
Educational institutions
Feedback
Orbital robotics
Quaternions
Robot control
Space technology
Space vehicles
Torque control
title On choosing quaternion equilibrium point in attitude stabilization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T11%3A37%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=On%20choosing%20quaternion%20equilibrium%20point%20in%20attitude%20stabilization&rft.btitle=2010%20IEEE%20Aerospace%20Conference&rft.au=Schlanbusch,%20Rune&rft.date=2010-03&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.issn=1095-323X&rft.eissn=2996-2358&rft.isbn=9781424438877&rft.isbn_list=142443887X&rft_id=info:doi/10.1109/AERO.2010.5446731&rft_dat=%3Cieee_6IE%3E5446731%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424438888&rft.eisbn_list=9781424438884&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5446731&rfr_iscdi=true