A Study of Two Image Representations for Head Pose Estimation
Traditional appearance-based head pose estimation methods use the holistic face appearance as the input and then employ subspace analysis methods to extract low-dimensional features for classification. However, the face appearance may be more related to the unique identity of an individual rather th...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 968 |
---|---|
container_issue | |
container_start_page | 963 |
container_title | |
container_volume | |
creator | Ligeng Dong Linmi Tao Guangyou Xu Oliver, P. |
description | Traditional appearance-based head pose estimation methods use the holistic face appearance as the input and then employ subspace analysis methods to extract low-dimensional features for classification. However, the face appearance may be more related to the unique identity of an individual rather than head poses. In this paper, we presented a comparative study of two image representations which aim to specifically describe head pose variations. The histogram of oriented gradient (HOG) based method relies on the gradient orientation distribution. The GaFour method exploits asymmetry in the intensities of each row of the face image, using a Gabor filter and Fourier transform to represent the face images. We compare the two image representations combined with two linear subspace methods (PCA and LDA). Experiments on two public face databases (CMU-PIE and CAS-PEAL) show that both HOG+LDA and GaFour+LDA give good results and HOG+LDA provides the best performance with a lower feature dimension. |
doi_str_mv | 10.1109/ICIG.2009.141 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5437844</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5437844</ieee_id><sourcerecordid>5437844</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-20cd6c2b5e67a382eb0333a2aa25b617b5466d6deb8f3e82b3e1ac4af2815c8e3</originalsourceid><addsrcrecordid>eNotjc1Kw0AURgekoK1dunIzL5A4987_wkUJtQ0UFK3rMpPckYhtSiYifXu1uvrgHDgfYzcgSgDh7-qqXpUohC9BwQWbgkKlNEprJmz6y70SxrtLNs_5XQgB1hgEf8XuF_xl_GxPvE98-9Xzeh_eiD_TcaBMhzGMXX_IPPUDX1No-VOfiS_z2O3P5ppNUvjINP_fGXt9WG6rdbF5XNXVYlN0YPVYoGha02DUZGyQDikKKWXAEFBHAzZqZUxrWoouSXIYJUFoVEjoQDeO5Izd_nU7Itodh5_74bTTSlqnlPwGpgFHXw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A Study of Two Image Representations for Head Pose Estimation</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Ligeng Dong ; Linmi Tao ; Guangyou Xu ; Oliver, P.</creator><creatorcontrib>Ligeng Dong ; Linmi Tao ; Guangyou Xu ; Oliver, P.</creatorcontrib><description>Traditional appearance-based head pose estimation methods use the holistic face appearance as the input and then employ subspace analysis methods to extract low-dimensional features for classification. However, the face appearance may be more related to the unique identity of an individual rather than head poses. In this paper, we presented a comparative study of two image representations which aim to specifically describe head pose variations. The histogram of oriented gradient (HOG) based method relies on the gradient orientation distribution. The GaFour method exploits asymmetry in the intensities of each row of the face image, using a Gabor filter and Fourier transform to represent the face images. We compare the two image representations combined with two linear subspace methods (PCA and LDA). Experiments on two public face databases (CMU-PIE and CAS-PEAL) show that both HOG+LDA and GaFour+LDA give good results and HOG+LDA provides the best performance with a lower feature dimension.</description><identifier>ISBN: 1424452376</identifier><identifier>ISBN: 9781424452378</identifier><identifier>DOI: 10.1109/ICIG.2009.141</identifier><identifier>LCCN: 2009940698</identifier><language>eng</language><publisher>IEEE</publisher><subject>Feature extraction ; Fourier transforms ; Gabor filters ; Head ; Head pose estimation ; histogram of oriented gradient ; Histograms ; Image databases ; Image representation ; Linear discriminant analysis ; Principal component analysis ; Spatial databases ; the GaFour feature</subject><ispartof>2009 Fifth International Conference on Image and Graphics, 2009, p.963-968</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5437844$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5437844$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ligeng Dong</creatorcontrib><creatorcontrib>Linmi Tao</creatorcontrib><creatorcontrib>Guangyou Xu</creatorcontrib><creatorcontrib>Oliver, P.</creatorcontrib><title>A Study of Two Image Representations for Head Pose Estimation</title><title>2009 Fifth International Conference on Image and Graphics</title><addtitle>ICIG</addtitle><description>Traditional appearance-based head pose estimation methods use the holistic face appearance as the input and then employ subspace analysis methods to extract low-dimensional features for classification. However, the face appearance may be more related to the unique identity of an individual rather than head poses. In this paper, we presented a comparative study of two image representations which aim to specifically describe head pose variations. The histogram of oriented gradient (HOG) based method relies on the gradient orientation distribution. The GaFour method exploits asymmetry in the intensities of each row of the face image, using a Gabor filter and Fourier transform to represent the face images. We compare the two image representations combined with two linear subspace methods (PCA and LDA). Experiments on two public face databases (CMU-PIE and CAS-PEAL) show that both HOG+LDA and GaFour+LDA give good results and HOG+LDA provides the best performance with a lower feature dimension.</description><subject>Feature extraction</subject><subject>Fourier transforms</subject><subject>Gabor filters</subject><subject>Head</subject><subject>Head pose estimation</subject><subject>histogram of oriented gradient</subject><subject>Histograms</subject><subject>Image databases</subject><subject>Image representation</subject><subject>Linear discriminant analysis</subject><subject>Principal component analysis</subject><subject>Spatial databases</subject><subject>the GaFour feature</subject><isbn>1424452376</isbn><isbn>9781424452378</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotjc1Kw0AURgekoK1dunIzL5A4987_wkUJtQ0UFK3rMpPckYhtSiYifXu1uvrgHDgfYzcgSgDh7-qqXpUohC9BwQWbgkKlNEprJmz6y70SxrtLNs_5XQgB1hgEf8XuF_xl_GxPvE98-9Xzeh_eiD_TcaBMhzGMXX_IPPUDX1No-VOfiS_z2O3P5ppNUvjINP_fGXt9WG6rdbF5XNXVYlN0YPVYoGha02DUZGyQDikKKWXAEFBHAzZqZUxrWoouSXIYJUFoVEjoQDeO5Izd_nU7Itodh5_74bTTSlqnlPwGpgFHXw</recordid><startdate>200909</startdate><enddate>200909</enddate><creator>Ligeng Dong</creator><creator>Linmi Tao</creator><creator>Guangyou Xu</creator><creator>Oliver, P.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200909</creationdate><title>A Study of Two Image Representations for Head Pose Estimation</title><author>Ligeng Dong ; Linmi Tao ; Guangyou Xu ; Oliver, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-20cd6c2b5e67a382eb0333a2aa25b617b5466d6deb8f3e82b3e1ac4af2815c8e3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Feature extraction</topic><topic>Fourier transforms</topic><topic>Gabor filters</topic><topic>Head</topic><topic>Head pose estimation</topic><topic>histogram of oriented gradient</topic><topic>Histograms</topic><topic>Image databases</topic><topic>Image representation</topic><topic>Linear discriminant analysis</topic><topic>Principal component analysis</topic><topic>Spatial databases</topic><topic>the GaFour feature</topic><toplevel>online_resources</toplevel><creatorcontrib>Ligeng Dong</creatorcontrib><creatorcontrib>Linmi Tao</creatorcontrib><creatorcontrib>Guangyou Xu</creatorcontrib><creatorcontrib>Oliver, P.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ligeng Dong</au><au>Linmi Tao</au><au>Guangyou Xu</au><au>Oliver, P.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A Study of Two Image Representations for Head Pose Estimation</atitle><btitle>2009 Fifth International Conference on Image and Graphics</btitle><stitle>ICIG</stitle><date>2009-09</date><risdate>2009</risdate><spage>963</spage><epage>968</epage><pages>963-968</pages><isbn>1424452376</isbn><isbn>9781424452378</isbn><abstract>Traditional appearance-based head pose estimation methods use the holistic face appearance as the input and then employ subspace analysis methods to extract low-dimensional features for classification. However, the face appearance may be more related to the unique identity of an individual rather than head poses. In this paper, we presented a comparative study of two image representations which aim to specifically describe head pose variations. The histogram of oriented gradient (HOG) based method relies on the gradient orientation distribution. The GaFour method exploits asymmetry in the intensities of each row of the face image, using a Gabor filter and Fourier transform to represent the face images. We compare the two image representations combined with two linear subspace methods (PCA and LDA). Experiments on two public face databases (CMU-PIE and CAS-PEAL) show that both HOG+LDA and GaFour+LDA give good results and HOG+LDA provides the best performance with a lower feature dimension.</abstract><pub>IEEE</pub><doi>10.1109/ICIG.2009.141</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 1424452376 |
ispartof | 2009 Fifth International Conference on Image and Graphics, 2009, p.963-968 |
issn | |
language | eng |
recordid | cdi_ieee_primary_5437844 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Feature extraction Fourier transforms Gabor filters Head Head pose estimation histogram of oriented gradient Histograms Image databases Image representation Linear discriminant analysis Principal component analysis Spatial databases the GaFour feature |
title | A Study of Two Image Representations for Head Pose Estimation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T13%3A08%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20Study%20of%20Two%20Image%20Representations%20for%20Head%20Pose%20Estimation&rft.btitle=2009%20Fifth%20International%20Conference%20on%20Image%20and%20Graphics&rft.au=Ligeng%20Dong&rft.date=2009-09&rft.spage=963&rft.epage=968&rft.pages=963-968&rft.isbn=1424452376&rft.isbn_list=9781424452378&rft_id=info:doi/10.1109/ICIG.2009.141&rft_dat=%3Cieee_6IE%3E5437844%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5437844&rfr_iscdi=true |