A Study of Two Image Representations for Head Pose Estimation

Traditional appearance-based head pose estimation methods use the holistic face appearance as the input and then employ subspace analysis methods to extract low-dimensional features for classification. However, the face appearance may be more related to the unique identity of an individual rather th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Ligeng Dong, Linmi Tao, Guangyou Xu, Oliver, P.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 968
container_issue
container_start_page 963
container_title
container_volume
creator Ligeng Dong
Linmi Tao
Guangyou Xu
Oliver, P.
description Traditional appearance-based head pose estimation methods use the holistic face appearance as the input and then employ subspace analysis methods to extract low-dimensional features for classification. However, the face appearance may be more related to the unique identity of an individual rather than head poses. In this paper, we presented a comparative study of two image representations which aim to specifically describe head pose variations. The histogram of oriented gradient (HOG) based method relies on the gradient orientation distribution. The GaFour method exploits asymmetry in the intensities of each row of the face image, using a Gabor filter and Fourier transform to represent the face images. We compare the two image representations combined with two linear subspace methods (PCA and LDA). Experiments on two public face databases (CMU-PIE and CAS-PEAL) show that both HOG+LDA and GaFour+LDA give good results and HOG+LDA provides the best performance with a lower feature dimension.
doi_str_mv 10.1109/ICIG.2009.141
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5437844</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5437844</ieee_id><sourcerecordid>5437844</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-20cd6c2b5e67a382eb0333a2aa25b617b5466d6deb8f3e82b3e1ac4af2815c8e3</originalsourceid><addsrcrecordid>eNotjc1Kw0AURgekoK1dunIzL5A4987_wkUJtQ0UFK3rMpPckYhtSiYifXu1uvrgHDgfYzcgSgDh7-qqXpUohC9BwQWbgkKlNEprJmz6y70SxrtLNs_5XQgB1hgEf8XuF_xl_GxPvE98-9Xzeh_eiD_TcaBMhzGMXX_IPPUDX1No-VOfiS_z2O3P5ppNUvjINP_fGXt9WG6rdbF5XNXVYlN0YPVYoGha02DUZGyQDikKKWXAEFBHAzZqZUxrWoouSXIYJUFoVEjoQDeO5Izd_nU7Itodh5_74bTTSlqnlPwGpgFHXw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A Study of Two Image Representations for Head Pose Estimation</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Ligeng Dong ; Linmi Tao ; Guangyou Xu ; Oliver, P.</creator><creatorcontrib>Ligeng Dong ; Linmi Tao ; Guangyou Xu ; Oliver, P.</creatorcontrib><description>Traditional appearance-based head pose estimation methods use the holistic face appearance as the input and then employ subspace analysis methods to extract low-dimensional features for classification. However, the face appearance may be more related to the unique identity of an individual rather than head poses. In this paper, we presented a comparative study of two image representations which aim to specifically describe head pose variations. The histogram of oriented gradient (HOG) based method relies on the gradient orientation distribution. The GaFour method exploits asymmetry in the intensities of each row of the face image, using a Gabor filter and Fourier transform to represent the face images. We compare the two image representations combined with two linear subspace methods (PCA and LDA). Experiments on two public face databases (CMU-PIE and CAS-PEAL) show that both HOG+LDA and GaFour+LDA give good results and HOG+LDA provides the best performance with a lower feature dimension.</description><identifier>ISBN: 1424452376</identifier><identifier>ISBN: 9781424452378</identifier><identifier>DOI: 10.1109/ICIG.2009.141</identifier><identifier>LCCN: 2009940698</identifier><language>eng</language><publisher>IEEE</publisher><subject>Feature extraction ; Fourier transforms ; Gabor filters ; Head ; Head pose estimation ; histogram of oriented gradient ; Histograms ; Image databases ; Image representation ; Linear discriminant analysis ; Principal component analysis ; Spatial databases ; the GaFour feature</subject><ispartof>2009 Fifth International Conference on Image and Graphics, 2009, p.963-968</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5437844$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5437844$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ligeng Dong</creatorcontrib><creatorcontrib>Linmi Tao</creatorcontrib><creatorcontrib>Guangyou Xu</creatorcontrib><creatorcontrib>Oliver, P.</creatorcontrib><title>A Study of Two Image Representations for Head Pose Estimation</title><title>2009 Fifth International Conference on Image and Graphics</title><addtitle>ICIG</addtitle><description>Traditional appearance-based head pose estimation methods use the holistic face appearance as the input and then employ subspace analysis methods to extract low-dimensional features for classification. However, the face appearance may be more related to the unique identity of an individual rather than head poses. In this paper, we presented a comparative study of two image representations which aim to specifically describe head pose variations. The histogram of oriented gradient (HOG) based method relies on the gradient orientation distribution. The GaFour method exploits asymmetry in the intensities of each row of the face image, using a Gabor filter and Fourier transform to represent the face images. We compare the two image representations combined with two linear subspace methods (PCA and LDA). Experiments on two public face databases (CMU-PIE and CAS-PEAL) show that both HOG+LDA and GaFour+LDA give good results and HOG+LDA provides the best performance with a lower feature dimension.</description><subject>Feature extraction</subject><subject>Fourier transforms</subject><subject>Gabor filters</subject><subject>Head</subject><subject>Head pose estimation</subject><subject>histogram of oriented gradient</subject><subject>Histograms</subject><subject>Image databases</subject><subject>Image representation</subject><subject>Linear discriminant analysis</subject><subject>Principal component analysis</subject><subject>Spatial databases</subject><subject>the GaFour feature</subject><isbn>1424452376</isbn><isbn>9781424452378</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotjc1Kw0AURgekoK1dunIzL5A4987_wkUJtQ0UFK3rMpPckYhtSiYifXu1uvrgHDgfYzcgSgDh7-qqXpUohC9BwQWbgkKlNEprJmz6y70SxrtLNs_5XQgB1hgEf8XuF_xl_GxPvE98-9Xzeh_eiD_TcaBMhzGMXX_IPPUDX1No-VOfiS_z2O3P5ppNUvjINP_fGXt9WG6rdbF5XNXVYlN0YPVYoGha02DUZGyQDikKKWXAEFBHAzZqZUxrWoouSXIYJUFoVEjoQDeO5Izd_nU7Itodh5_74bTTSlqnlPwGpgFHXw</recordid><startdate>200909</startdate><enddate>200909</enddate><creator>Ligeng Dong</creator><creator>Linmi Tao</creator><creator>Guangyou Xu</creator><creator>Oliver, P.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200909</creationdate><title>A Study of Two Image Representations for Head Pose Estimation</title><author>Ligeng Dong ; Linmi Tao ; Guangyou Xu ; Oliver, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-20cd6c2b5e67a382eb0333a2aa25b617b5466d6deb8f3e82b3e1ac4af2815c8e3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Feature extraction</topic><topic>Fourier transforms</topic><topic>Gabor filters</topic><topic>Head</topic><topic>Head pose estimation</topic><topic>histogram of oriented gradient</topic><topic>Histograms</topic><topic>Image databases</topic><topic>Image representation</topic><topic>Linear discriminant analysis</topic><topic>Principal component analysis</topic><topic>Spatial databases</topic><topic>the GaFour feature</topic><toplevel>online_resources</toplevel><creatorcontrib>Ligeng Dong</creatorcontrib><creatorcontrib>Linmi Tao</creatorcontrib><creatorcontrib>Guangyou Xu</creatorcontrib><creatorcontrib>Oliver, P.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ligeng Dong</au><au>Linmi Tao</au><au>Guangyou Xu</au><au>Oliver, P.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A Study of Two Image Representations for Head Pose Estimation</atitle><btitle>2009 Fifth International Conference on Image and Graphics</btitle><stitle>ICIG</stitle><date>2009-09</date><risdate>2009</risdate><spage>963</spage><epage>968</epage><pages>963-968</pages><isbn>1424452376</isbn><isbn>9781424452378</isbn><abstract>Traditional appearance-based head pose estimation methods use the holistic face appearance as the input and then employ subspace analysis methods to extract low-dimensional features for classification. However, the face appearance may be more related to the unique identity of an individual rather than head poses. In this paper, we presented a comparative study of two image representations which aim to specifically describe head pose variations. The histogram of oriented gradient (HOG) based method relies on the gradient orientation distribution. The GaFour method exploits asymmetry in the intensities of each row of the face image, using a Gabor filter and Fourier transform to represent the face images. We compare the two image representations combined with two linear subspace methods (PCA and LDA). Experiments on two public face databases (CMU-PIE and CAS-PEAL) show that both HOG+LDA and GaFour+LDA give good results and HOG+LDA provides the best performance with a lower feature dimension.</abstract><pub>IEEE</pub><doi>10.1109/ICIG.2009.141</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 1424452376
ispartof 2009 Fifth International Conference on Image and Graphics, 2009, p.963-968
issn
language eng
recordid cdi_ieee_primary_5437844
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Feature extraction
Fourier transforms
Gabor filters
Head
Head pose estimation
histogram of oriented gradient
Histograms
Image databases
Image representation
Linear discriminant analysis
Principal component analysis
Spatial databases
the GaFour feature
title A Study of Two Image Representations for Head Pose Estimation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T13%3A08%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20Study%20of%20Two%20Image%20Representations%20for%20Head%20Pose%20Estimation&rft.btitle=2009%20Fifth%20International%20Conference%20on%20Image%20and%20Graphics&rft.au=Ligeng%20Dong&rft.date=2009-09&rft.spage=963&rft.epage=968&rft.pages=963-968&rft.isbn=1424452376&rft.isbn_list=9781424452378&rft_id=info:doi/10.1109/ICIG.2009.141&rft_dat=%3Cieee_6IE%3E5437844%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5437844&rfr_iscdi=true