A comparison of classical two phase (2L) and transformer - Coupled (XL) interleaved boost converters for fuel cell applications
This paper investigates power interfaces for a PEM fuel cell. The main focus of the investigation is to analyze and test the effects of part-load operation on component selection and stresses with an emphasis on the magnetic components. The standard two-phase interleaved boost with a discrete induct...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper investigates power interfaces for a PEM fuel cell. The main focus of the investigation is to analyze and test the effects of part-load operation on component selection and stresses with an emphasis on the magnetic components. The standard two-phase interleaved boost with a discrete inductor per phase is compared with the transformer-coupled two-phase interleaved boost, consisting of a single input inductor in series with a phase-coupling transformer. The converter characteristics are investigated for the experimental V-I inputs derived from the polarization curve of an industrial PEM fuel cell. Experimental validation is presented for a 3 kW design. Magnetic sizing of air-cooled components for power converters up to 45 kW are additionally investigated. |
---|---|
ISSN: | 1048-2334 2470-6647 |
DOI: | 10.1109/APEC.2010.5433580 |