Reducing Features to Improve Bug Prediction

Recently, machine learning classifiers have emerged as a way to predict the existence of a bug in a change made to a source code file. The classifier is first trained on software history data, and then used to predict bugs. Two drawbacks of existing classifier-based bug prediction are potentially in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Shivaji, Shivkumar, Jr, E. James Whitehead, Akella, Ram, Kim, Sunghun
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Recently, machine learning classifiers have emerged as a way to predict the existence of a bug in a change made to a source code file. The classifier is first trained on software history data, and then used to predict bugs. Two drawbacks of existing classifier-based bug prediction are potentially insufficient accuracy for practical use, and use of a large number of features. These large numbers of features adversely impact scalability and accuracy of the approach. This paper proposes a feature selection technique applicable to classification-based bug prediction. This technique is applied to predict bugs in software changes, and performance of Naive Bayes and Support Vector Machine (SVM) classifiers is characterized.
ISSN:1938-4300
DOI:10.1109/ASE.2009.76