Structural Feature-Based Fault-Detection Approach for the Recipes of Similar Products

The sensor signals (i.e., data streams of process parameters) of semiconductor processes exhibit nonlinear, multimodal trajectories with some common structural features. In this paper, we propose a process fault-detection approach based on the structural features of the sensor signals, such as the g...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on semiconductor manufacturing 2010-05, Vol.23 (2), p.273-283
Hauptverfasser: Ko, Jong Myoung, Kim, Chang Ouk, Lee, Seung Jun, Hong, Joo Pyo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 283
container_issue 2
container_start_page 273
container_title IEEE transactions on semiconductor manufacturing
container_volume 23
creator Ko, Jong Myoung
Kim, Chang Ouk
Lee, Seung Jun
Hong, Joo Pyo
description The sensor signals (i.e., data streams of process parameters) of semiconductor processes exhibit nonlinear, multimodal trajectories with some common structural features. In this paper, we propose a process fault-detection approach based on the structural features of the sensor signals, such as the geometric shape, length, and height. The approach aims at constructing a shared univariate model and a multivariate model. The shared univariate model is set up for individual process parameters and clusters the process recipes of similar products. The result is a tree where the leaf nodes and intermediate nodes correspond to individual recipes and feature-based fault-detection criteria, respectively. The recipes with the same parent nodes share the criteria specified in the nodes. On the other hand, the multivariate model is constructed for a process recipe. It builds a Hotelling's T 2 that considers the correlations between the signal structures of the process parameters. We demonstrated that the test results of the two models using the data collected from a work-site etch process were encouraging.
doi_str_mv 10.1109/TSM.2010.2045587
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_5431000</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5431000</ieee_id><sourcerecordid>2716756241</sourcerecordid><originalsourceid>FETCH-LOGICAL-c387t-af23475316d5c3f9c794349db68b28a11974bbcbe75fc27ca7569c4d945860543</originalsourceid><addsrcrecordid>eNqFkc1Lw0AQxRdRsFbvgpcFEbxE9_vjWKtVoaLY9hw2mwlNSZu6mxz8793S4sGLp5lhfvN4w0PokpI7Som9n8_e7hhJEyNCSqOP0ICmmjEu5DEaEGNFpiTRp-gsxhUhVAirB2gx60Lvuz64Bk_ApQayBxehxBPXN132CB34rm43eLTdhtb5Ja7agLsl4E_w9RYibis8q9d14wL-CG2Z1OI5OqlcE-HiUIdoMXmaj1-y6fvz63g0zTw3ustcldxpyakqpeeV9doKLmxZKFMw4yi1WhSFL0DLyjPtnZbKelFaIY0iUvAhut3rJmtfPcQuX9fRQ9O4DbR9zKnSlBsjqP0f5VQqI4mSCb3-g67aPmzSIzklTFOtBFWJInvKhzbGAFW-DfXahe8E5btI8hRJvoskP0SSTm4Owi5611TBbXwdf-8Y01ZatjNwtedqAPhdp38pIYT_AKrXkkU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1027176416</pqid></control><display><type>article</type><title>Structural Feature-Based Fault-Detection Approach for the Recipes of Similar Products</title><source>IEEE Electronic Library (IEL)</source><creator>Ko, Jong Myoung ; Kim, Chang Ouk ; Lee, Seung Jun ; Hong, Joo Pyo</creator><creatorcontrib>Ko, Jong Myoung ; Kim, Chang Ouk ; Lee, Seung Jun ; Hong, Joo Pyo</creatorcontrib><description>The sensor signals (i.e., data streams of process parameters) of semiconductor processes exhibit nonlinear, multimodal trajectories with some common structural features. In this paper, we propose a process fault-detection approach based on the structural features of the sensor signals, such as the geometric shape, length, and height. The approach aims at constructing a shared univariate model and a multivariate model. The shared univariate model is set up for individual process parameters and clusters the process recipes of similar products. The result is a tree where the leaf nodes and intermediate nodes correspond to individual recipes and feature-based fault-detection criteria, respectively. The recipes with the same parent nodes share the criteria specified in the nodes. On the other hand, the multivariate model is constructed for a process recipe. It builds a Hotelling's T 2 that considers the correlations between the signal structures of the process parameters. We demonstrated that the test results of the two models using the data collected from a work-site etch process were encouraging.</description><identifier>ISSN: 0894-6507</identifier><identifier>EISSN: 1558-2345</identifier><identifier>DOI: 10.1109/TSM.2010.2045587</identifier><identifier>CODEN: ITSMED</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Construction ; Criteria ; Electronics ; Etching ; Exact sciences and technology ; Fault detection ; Feature extraction ; Feature-based fault-detection criteria ; General equipment and techniques ; Instruments, apparatus, components and techniques common to several branches of physics and astronomy ; Microelectronic fabrication (materials and surfaces technology) ; Multimodal sensors ; multivariate model ; Physics ; process fault detection ; Process parameters ; Recipes ; Semiconductor device modeling ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; semiconductor manufacturing ; Semiconductor process modeling ; Semiconductors ; Sensor phenomena and characterization ; Sensors ; Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing ; Shape control ; shared univariate model ; Signal processing ; Statistics ; Streams ; Studies ; Temperature sensors ; Testing, measurement, noise and reliability</subject><ispartof>IEEE transactions on semiconductor manufacturing, 2010-05, Vol.23 (2), p.273-283</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) May 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c387t-af23475316d5c3f9c794349db68b28a11974bbcbe75fc27ca7569c4d945860543</citedby><cites>FETCH-LOGICAL-c387t-af23475316d5c3f9c794349db68b28a11974bbcbe75fc27ca7569c4d945860543</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5431000$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5431000$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22795925$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Ko, Jong Myoung</creatorcontrib><creatorcontrib>Kim, Chang Ouk</creatorcontrib><creatorcontrib>Lee, Seung Jun</creatorcontrib><creatorcontrib>Hong, Joo Pyo</creatorcontrib><title>Structural Feature-Based Fault-Detection Approach for the Recipes of Similar Products</title><title>IEEE transactions on semiconductor manufacturing</title><addtitle>TSM</addtitle><description>The sensor signals (i.e., data streams of process parameters) of semiconductor processes exhibit nonlinear, multimodal trajectories with some common structural features. In this paper, we propose a process fault-detection approach based on the structural features of the sensor signals, such as the geometric shape, length, and height. The approach aims at constructing a shared univariate model and a multivariate model. The shared univariate model is set up for individual process parameters and clusters the process recipes of similar products. The result is a tree where the leaf nodes and intermediate nodes correspond to individual recipes and feature-based fault-detection criteria, respectively. The recipes with the same parent nodes share the criteria specified in the nodes. On the other hand, the multivariate model is constructed for a process recipe. It builds a Hotelling's T 2 that considers the correlations between the signal structures of the process parameters. We demonstrated that the test results of the two models using the data collected from a work-site etch process were encouraging.</description><subject>Applied sciences</subject><subject>Construction</subject><subject>Criteria</subject><subject>Electronics</subject><subject>Etching</subject><subject>Exact sciences and technology</subject><subject>Fault detection</subject><subject>Feature extraction</subject><subject>Feature-based fault-detection criteria</subject><subject>General equipment and techniques</subject><subject>Instruments, apparatus, components and techniques common to several branches of physics and astronomy</subject><subject>Microelectronic fabrication (materials and surfaces technology)</subject><subject>Multimodal sensors</subject><subject>multivariate model</subject><subject>Physics</subject><subject>process fault detection</subject><subject>Process parameters</subject><subject>Recipes</subject><subject>Semiconductor device modeling</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>semiconductor manufacturing</subject><subject>Semiconductor process modeling</subject><subject>Semiconductors</subject><subject>Sensor phenomena and characterization</subject><subject>Sensors</subject><subject>Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing</subject><subject>Shape control</subject><subject>shared univariate model</subject><subject>Signal processing</subject><subject>Statistics</subject><subject>Streams</subject><subject>Studies</subject><subject>Temperature sensors</subject><subject>Testing, measurement, noise and reliability</subject><issn>0894-6507</issn><issn>1558-2345</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqFkc1Lw0AQxRdRsFbvgpcFEbxE9_vjWKtVoaLY9hw2mwlNSZu6mxz8793S4sGLp5lhfvN4w0PokpI7Som9n8_e7hhJEyNCSqOP0ICmmjEu5DEaEGNFpiTRp-gsxhUhVAirB2gx60Lvuz64Bk_ApQayBxehxBPXN132CB34rm43eLTdhtb5Ja7agLsl4E_w9RYibis8q9d14wL-CG2Z1OI5OqlcE-HiUIdoMXmaj1-y6fvz63g0zTw3ustcldxpyakqpeeV9doKLmxZKFMw4yi1WhSFL0DLyjPtnZbKelFaIY0iUvAhut3rJmtfPcQuX9fRQ9O4DbR9zKnSlBsjqP0f5VQqI4mSCb3-g67aPmzSIzklTFOtBFWJInvKhzbGAFW-DfXahe8E5btI8hRJvoskP0SSTm4Owi5611TBbXwdf-8Y01ZatjNwtedqAPhdp38pIYT_AKrXkkU</recordid><startdate>20100501</startdate><enddate>20100501</enddate><creator>Ko, Jong Myoung</creator><creator>Kim, Chang Ouk</creator><creator>Lee, Seung Jun</creator><creator>Hong, Joo Pyo</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20100501</creationdate><title>Structural Feature-Based Fault-Detection Approach for the Recipes of Similar Products</title><author>Ko, Jong Myoung ; Kim, Chang Ouk ; Lee, Seung Jun ; Hong, Joo Pyo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c387t-af23475316d5c3f9c794349db68b28a11974bbcbe75fc27ca7569c4d945860543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Applied sciences</topic><topic>Construction</topic><topic>Criteria</topic><topic>Electronics</topic><topic>Etching</topic><topic>Exact sciences and technology</topic><topic>Fault detection</topic><topic>Feature extraction</topic><topic>Feature-based fault-detection criteria</topic><topic>General equipment and techniques</topic><topic>Instruments, apparatus, components and techniques common to several branches of physics and astronomy</topic><topic>Microelectronic fabrication (materials and surfaces technology)</topic><topic>Multimodal sensors</topic><topic>multivariate model</topic><topic>Physics</topic><topic>process fault detection</topic><topic>Process parameters</topic><topic>Recipes</topic><topic>Semiconductor device modeling</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>semiconductor manufacturing</topic><topic>Semiconductor process modeling</topic><topic>Semiconductors</topic><topic>Sensor phenomena and characterization</topic><topic>Sensors</topic><topic>Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing</topic><topic>Shape control</topic><topic>shared univariate model</topic><topic>Signal processing</topic><topic>Statistics</topic><topic>Streams</topic><topic>Studies</topic><topic>Temperature sensors</topic><topic>Testing, measurement, noise and reliability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ko, Jong Myoung</creatorcontrib><creatorcontrib>Kim, Chang Ouk</creatorcontrib><creatorcontrib>Lee, Seung Jun</creatorcontrib><creatorcontrib>Hong, Joo Pyo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on semiconductor manufacturing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ko, Jong Myoung</au><au>Kim, Chang Ouk</au><au>Lee, Seung Jun</au><au>Hong, Joo Pyo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural Feature-Based Fault-Detection Approach for the Recipes of Similar Products</atitle><jtitle>IEEE transactions on semiconductor manufacturing</jtitle><stitle>TSM</stitle><date>2010-05-01</date><risdate>2010</risdate><volume>23</volume><issue>2</issue><spage>273</spage><epage>283</epage><pages>273-283</pages><issn>0894-6507</issn><eissn>1558-2345</eissn><coden>ITSMED</coden><abstract>The sensor signals (i.e., data streams of process parameters) of semiconductor processes exhibit nonlinear, multimodal trajectories with some common structural features. In this paper, we propose a process fault-detection approach based on the structural features of the sensor signals, such as the geometric shape, length, and height. The approach aims at constructing a shared univariate model and a multivariate model. The shared univariate model is set up for individual process parameters and clusters the process recipes of similar products. The result is a tree where the leaf nodes and intermediate nodes correspond to individual recipes and feature-based fault-detection criteria, respectively. The recipes with the same parent nodes share the criteria specified in the nodes. On the other hand, the multivariate model is constructed for a process recipe. It builds a Hotelling's T 2 that considers the correlations between the signal structures of the process parameters. We demonstrated that the test results of the two models using the data collected from a work-site etch process were encouraging.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TSM.2010.2045587</doi><tpages>11</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0894-6507
ispartof IEEE transactions on semiconductor manufacturing, 2010-05, Vol.23 (2), p.273-283
issn 0894-6507
1558-2345
language eng
recordid cdi_ieee_primary_5431000
source IEEE Electronic Library (IEL)
subjects Applied sciences
Construction
Criteria
Electronics
Etching
Exact sciences and technology
Fault detection
Feature extraction
Feature-based fault-detection criteria
General equipment and techniques
Instruments, apparatus, components and techniques common to several branches of physics and astronomy
Microelectronic fabrication (materials and surfaces technology)
Multimodal sensors
multivariate model
Physics
process fault detection
Process parameters
Recipes
Semiconductor device modeling
Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices
semiconductor manufacturing
Semiconductor process modeling
Semiconductors
Sensor phenomena and characterization
Sensors
Sensors (chemical, optical, electrical, movement, gas, etc.)
remote sensing
Shape control
shared univariate model
Signal processing
Statistics
Streams
Studies
Temperature sensors
Testing, measurement, noise and reliability
title Structural Feature-Based Fault-Detection Approach for the Recipes of Similar Products
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T00%3A46%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20Feature-Based%20Fault-Detection%20Approach%20for%20the%20Recipes%20of%20Similar%20Products&rft.jtitle=IEEE%20transactions%20on%20semiconductor%20manufacturing&rft.au=Ko,%20Jong%20Myoung&rft.date=2010-05-01&rft.volume=23&rft.issue=2&rft.spage=273&rft.epage=283&rft.pages=273-283&rft.issn=0894-6507&rft.eissn=1558-2345&rft.coden=ITSMED&rft_id=info:doi/10.1109/TSM.2010.2045587&rft_dat=%3Cproquest_RIE%3E2716756241%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1027176416&rft_id=info:pmid/&rft_ieee_id=5431000&rfr_iscdi=true