Employing Bayesian Belief Networks for energy efficient Network Management

Network Management Systems (NMS) are used to monitor the network and along with Operations Support Systems (OSS) maintain the performance with a focus on guaranteeing sustained QoS to the applications and services. One aspect that is given less importance is the energy consumption of the network ele...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Bashar, A., Parr, G.P., McClean, S.I., Scotney, B.W., Subramanian, M., Chaudhari, S.K., Gonsalves, T.A.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5
container_issue
container_start_page 1
container_title
container_volume
creator Bashar, A.
Parr, G.P.
McClean, S.I.
Scotney, B.W.
Subramanian, M.
Chaudhari, S.K.
Gonsalves, T.A.
description Network Management Systems (NMS) are used to monitor the network and along with Operations Support Systems (OSS) maintain the performance with a focus on guaranteeing sustained QoS to the applications and services. One aspect that is given less importance is the energy consumption of the network elements during the off peak periods. This paper looks at a scenario where the NMS plays an important role in making the network energy efficient by intelligently turning the network elements or their selective ports to sleep mode when they are underutilized. To this end, we propose and evaluate a Bayesian Belief Network (BBN) based Decision Management System (DMS), which provides intelligent decisions to the NMS for it to adaptively alter the operational modes of the network elements, without compromising the performance and QoS constraints. Simulated network has been used to provide the proof of concept followed by discussions on the amount of energy saved and its effect on the network performance.
doi_str_mv 10.1109/NCC.2010.5430172
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5430172</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5430172</ieee_id><sourcerecordid>5430172</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-ab40ddd509ff3b4be818e2b90182cc7273c2779b2aa3eb041f5405253218679a3</originalsourceid><addsrcrecordid>eNo1j01LAzEYhCMiqHXvgpf8ga1J3qRJjnapVan10ntJdt8s0f0o2QXZf--C7VyGZwYGhpBHzpacM_u8L4qlYDMpCYxrcUUyqw2XQsoVGKWuyf0FgN-SbBi-2SywoBXckY9Ne2r6KXY1XbsJh-g6usYmYqB7HH_79DPQ0CeKHaZ6ohhCLCN246Wln65zNbZz9EBugmsGzM6-IIfXzaF4y3df2_fiZZdHy8bcecmqqlLMhgBeejTcoPCWcSPKUgsNpdDaeuEcoGeSByWZEgoENyttHSzI0_9sRMTjKcXWpel4fg9_rG1NLQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Employing Bayesian Belief Networks for energy efficient Network Management</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Bashar, A. ; Parr, G.P. ; McClean, S.I. ; Scotney, B.W. ; Subramanian, M. ; Chaudhari, S.K. ; Gonsalves, T.A.</creator><creatorcontrib>Bashar, A. ; Parr, G.P. ; McClean, S.I. ; Scotney, B.W. ; Subramanian, M. ; Chaudhari, S.K. ; Gonsalves, T.A.</creatorcontrib><description>Network Management Systems (NMS) are used to monitor the network and along with Operations Support Systems (OSS) maintain the performance with a focus on guaranteeing sustained QoS to the applications and services. One aspect that is given less importance is the energy consumption of the network elements during the off peak periods. This paper looks at a scenario where the NMS plays an important role in making the network energy efficient by intelligently turning the network elements or their selective ports to sleep mode when they are underutilized. To this end, we propose and evaluate a Bayesian Belief Network (BBN) based Decision Management System (DMS), which provides intelligent decisions to the NMS for it to adaptively alter the operational modes of the network elements, without compromising the performance and QoS constraints. Simulated network has been used to provide the proof of concept followed by discussions on the amount of energy saved and its effect on the network performance.</description><identifier>ISBN: 1424463831</identifier><identifier>ISBN: 9781424463831</identifier><identifier>EISBN: 9781424463855</identifier><identifier>EISBN: 1424463866</identifier><identifier>EISBN: 9781424463862</identifier><identifier>EISBN: 1424463858</identifier><identifier>DOI: 10.1109/NCC.2010.5430172</identifier><language>eng</language><publisher>IEEE</publisher><subject>Bayesian Belief Networks (BBN) ; Bayesian methods ; Computer network management ; Energy consumption ; Energy efficiency ; Energy management ; Energy-aware ; Intelligent networks ; IP networks ; Network Management ; Next generation networking ; Quality of service ; Telecommunication computing</subject><ispartof>2010 National Conference On Communications (NCC), 2010, p.1-5</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5430172$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5430172$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Bashar, A.</creatorcontrib><creatorcontrib>Parr, G.P.</creatorcontrib><creatorcontrib>McClean, S.I.</creatorcontrib><creatorcontrib>Scotney, B.W.</creatorcontrib><creatorcontrib>Subramanian, M.</creatorcontrib><creatorcontrib>Chaudhari, S.K.</creatorcontrib><creatorcontrib>Gonsalves, T.A.</creatorcontrib><title>Employing Bayesian Belief Networks for energy efficient Network Management</title><title>2010 National Conference On Communications (NCC)</title><addtitle>NCC</addtitle><description>Network Management Systems (NMS) are used to monitor the network and along with Operations Support Systems (OSS) maintain the performance with a focus on guaranteeing sustained QoS to the applications and services. One aspect that is given less importance is the energy consumption of the network elements during the off peak periods. This paper looks at a scenario where the NMS plays an important role in making the network energy efficient by intelligently turning the network elements or their selective ports to sleep mode when they are underutilized. To this end, we propose and evaluate a Bayesian Belief Network (BBN) based Decision Management System (DMS), which provides intelligent decisions to the NMS for it to adaptively alter the operational modes of the network elements, without compromising the performance and QoS constraints. Simulated network has been used to provide the proof of concept followed by discussions on the amount of energy saved and its effect on the network performance.</description><subject>Bayesian Belief Networks (BBN)</subject><subject>Bayesian methods</subject><subject>Computer network management</subject><subject>Energy consumption</subject><subject>Energy efficiency</subject><subject>Energy management</subject><subject>Energy-aware</subject><subject>Intelligent networks</subject><subject>IP networks</subject><subject>Network Management</subject><subject>Next generation networking</subject><subject>Quality of service</subject><subject>Telecommunication computing</subject><isbn>1424463831</isbn><isbn>9781424463831</isbn><isbn>9781424463855</isbn><isbn>1424463866</isbn><isbn>9781424463862</isbn><isbn>1424463858</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1j01LAzEYhCMiqHXvgpf8ga1J3qRJjnapVan10ntJdt8s0f0o2QXZf--C7VyGZwYGhpBHzpacM_u8L4qlYDMpCYxrcUUyqw2XQsoVGKWuyf0FgN-SbBi-2SywoBXckY9Ne2r6KXY1XbsJh-g6usYmYqB7HH_79DPQ0CeKHaZ6ohhCLCN246Wln65zNbZz9EBugmsGzM6-IIfXzaF4y3df2_fiZZdHy8bcecmqqlLMhgBeejTcoPCWcSPKUgsNpdDaeuEcoGeSByWZEgoENyttHSzI0_9sRMTjKcXWpel4fg9_rG1NLQ</recordid><startdate>201001</startdate><enddate>201001</enddate><creator>Bashar, A.</creator><creator>Parr, G.P.</creator><creator>McClean, S.I.</creator><creator>Scotney, B.W.</creator><creator>Subramanian, M.</creator><creator>Chaudhari, S.K.</creator><creator>Gonsalves, T.A.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201001</creationdate><title>Employing Bayesian Belief Networks for energy efficient Network Management</title><author>Bashar, A. ; Parr, G.P. ; McClean, S.I. ; Scotney, B.W. ; Subramanian, M. ; Chaudhari, S.K. ; Gonsalves, T.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-ab40ddd509ff3b4be818e2b90182cc7273c2779b2aa3eb041f5405253218679a3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Bayesian Belief Networks (BBN)</topic><topic>Bayesian methods</topic><topic>Computer network management</topic><topic>Energy consumption</topic><topic>Energy efficiency</topic><topic>Energy management</topic><topic>Energy-aware</topic><topic>Intelligent networks</topic><topic>IP networks</topic><topic>Network Management</topic><topic>Next generation networking</topic><topic>Quality of service</topic><topic>Telecommunication computing</topic><toplevel>online_resources</toplevel><creatorcontrib>Bashar, A.</creatorcontrib><creatorcontrib>Parr, G.P.</creatorcontrib><creatorcontrib>McClean, S.I.</creatorcontrib><creatorcontrib>Scotney, B.W.</creatorcontrib><creatorcontrib>Subramanian, M.</creatorcontrib><creatorcontrib>Chaudhari, S.K.</creatorcontrib><creatorcontrib>Gonsalves, T.A.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Bashar, A.</au><au>Parr, G.P.</au><au>McClean, S.I.</au><au>Scotney, B.W.</au><au>Subramanian, M.</au><au>Chaudhari, S.K.</au><au>Gonsalves, T.A.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Employing Bayesian Belief Networks for energy efficient Network Management</atitle><btitle>2010 National Conference On Communications (NCC)</btitle><stitle>NCC</stitle><date>2010-01</date><risdate>2010</risdate><spage>1</spage><epage>5</epage><pages>1-5</pages><isbn>1424463831</isbn><isbn>9781424463831</isbn><eisbn>9781424463855</eisbn><eisbn>1424463866</eisbn><eisbn>9781424463862</eisbn><eisbn>1424463858</eisbn><abstract>Network Management Systems (NMS) are used to monitor the network and along with Operations Support Systems (OSS) maintain the performance with a focus on guaranteeing sustained QoS to the applications and services. One aspect that is given less importance is the energy consumption of the network elements during the off peak periods. This paper looks at a scenario where the NMS plays an important role in making the network energy efficient by intelligently turning the network elements or their selective ports to sleep mode when they are underutilized. To this end, we propose and evaluate a Bayesian Belief Network (BBN) based Decision Management System (DMS), which provides intelligent decisions to the NMS for it to adaptively alter the operational modes of the network elements, without compromising the performance and QoS constraints. Simulated network has been used to provide the proof of concept followed by discussions on the amount of energy saved and its effect on the network performance.</abstract><pub>IEEE</pub><doi>10.1109/NCC.2010.5430172</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 1424463831
ispartof 2010 National Conference On Communications (NCC), 2010, p.1-5
issn
language eng
recordid cdi_ieee_primary_5430172
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Bayesian Belief Networks (BBN)
Bayesian methods
Computer network management
Energy consumption
Energy efficiency
Energy management
Energy-aware
Intelligent networks
IP networks
Network Management
Next generation networking
Quality of service
Telecommunication computing
title Employing Bayesian Belief Networks for energy efficient Network Management
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T11%3A42%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Employing%20Bayesian%20Belief%20Networks%20for%20energy%20efficient%20Network%20Management&rft.btitle=2010%20National%20Conference%20On%20Communications%20(NCC)&rft.au=Bashar,%20A.&rft.date=2010-01&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.isbn=1424463831&rft.isbn_list=9781424463831&rft_id=info:doi/10.1109/NCC.2010.5430172&rft_dat=%3Cieee_6IE%3E5430172%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424463855&rft.eisbn_list=1424463866&rft.eisbn_list=9781424463862&rft.eisbn_list=1424463858&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5430172&rfr_iscdi=true