Ontology-Driven Relation Extraction by Pattern Discovery

With this paper we describe an ontology-driven system that performs relation extraction over textual data. The system exploits expert knowledge of the domain, including lexical resources, in the form of an ontology to drive the extraction of patterns using manually annotated texts. Such patterns are...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Bellandi, A., Nasoni, S., Tommasi, A., Zavattari, C.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6
container_issue
container_start_page 1
container_title
container_volume
creator Bellandi, A.
Nasoni, S.
Tommasi, A.
Zavattari, C.
description With this paper we describe an ontology-driven system that performs relation extraction over textual data. The system exploits expert knowledge of the domain, including lexical resources, in the form of an ontology to drive the extraction of patterns using manually annotated texts. Such patterns are then applied in order to identify candidates for relation extraction. Paired with basic, reliable named-entity-level text annotation, this results in the discovery of relations among entities in Italian newspaper articles. In the paper, we describe the system and measure its performance.
doi_str_mv 10.1109/eKNOW.2010.17
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5430049</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5430049</ieee_id><sourcerecordid>5430049</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-a205104b53c2b6c466e5d42fe0235a9138dc3f5afc4ea3f63e0a1201aae35b953</originalsourceid><addsrcrecordid>eNpVz81Kw0AUBeAREZSapSs3eYHU-buTmaW01YrFiCguy53pjQzERCZDMW-vVTeuzvk2Bw5jF4LPheDuiu4fmte55AfXR6xwtRVaag3GOjj-Z2tPWTGO0XNpanPwGbNNn4dueJuqZYp76ssn6jDHoS9Xnzlh-Kl-Kh8xZ0p9uYxjGPaUpnN20mI3UvGXM_Zys3perKtNc3u3uN5UUdSQK5QcBNceVJDeBG0MwU7LlrhUgE4ouwuqBWyDJlStUcRRfL9BJAXegZqxy9_dSETbjxTfMU1b0Ipz7dQXhRhIEw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Ontology-Driven Relation Extraction by Pattern Discovery</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Bellandi, A. ; Nasoni, S. ; Tommasi, A. ; Zavattari, C.</creator><creatorcontrib>Bellandi, A. ; Nasoni, S. ; Tommasi, A. ; Zavattari, C.</creatorcontrib><description>With this paper we describe an ontology-driven system that performs relation extraction over textual data. The system exploits expert knowledge of the domain, including lexical resources, in the form of an ontology to drive the extraction of patterns using manually annotated texts. Such patterns are then applied in order to identify candidates for relation extraction. Paired with basic, reliable named-entity-level text annotation, this results in the discovery of relations among entities in Italian newspaper articles. In the paper, we describe the system and measure its performance.</description><identifier>ISBN: 9781424456888</identifier><identifier>ISBN: 1424456886</identifier><identifier>EISBN: 9781424456895</identifier><identifier>EISBN: 9780769539560</identifier><identifier>EISBN: 1424456894</identifier><identifier>EISBN: 0769539564</identifier><identifier>DOI: 10.1109/eKNOW.2010.17</identifier><language>eng</language><publisher>IEEE</publisher><subject>Companies ; Computer science ; Data mining ; Environmental economics ; Knowledge management ; Law enforcement ; Natural languages ; Ontologies ; Ontology-driven chunker ; Pattern discovery ; Relation Extraction ; System performance ; Text analysis</subject><ispartof>2010 Second International Conference on Information, Process, and Knowledge Management, 2010, p.1-6</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5430049$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5430049$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Bellandi, A.</creatorcontrib><creatorcontrib>Nasoni, S.</creatorcontrib><creatorcontrib>Tommasi, A.</creatorcontrib><creatorcontrib>Zavattari, C.</creatorcontrib><title>Ontology-Driven Relation Extraction by Pattern Discovery</title><title>2010 Second International Conference on Information, Process, and Knowledge Management</title><addtitle>EKNOW</addtitle><description>With this paper we describe an ontology-driven system that performs relation extraction over textual data. The system exploits expert knowledge of the domain, including lexical resources, in the form of an ontology to drive the extraction of patterns using manually annotated texts. Such patterns are then applied in order to identify candidates for relation extraction. Paired with basic, reliable named-entity-level text annotation, this results in the discovery of relations among entities in Italian newspaper articles. In the paper, we describe the system and measure its performance.</description><subject>Companies</subject><subject>Computer science</subject><subject>Data mining</subject><subject>Environmental economics</subject><subject>Knowledge management</subject><subject>Law enforcement</subject><subject>Natural languages</subject><subject>Ontologies</subject><subject>Ontology-driven chunker</subject><subject>Pattern discovery</subject><subject>Relation Extraction</subject><subject>System performance</subject><subject>Text analysis</subject><isbn>9781424456888</isbn><isbn>1424456886</isbn><isbn>9781424456895</isbn><isbn>9780769539560</isbn><isbn>1424456894</isbn><isbn>0769539564</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVz81Kw0AUBeAREZSapSs3eYHU-buTmaW01YrFiCguy53pjQzERCZDMW-vVTeuzvk2Bw5jF4LPheDuiu4fmte55AfXR6xwtRVaag3GOjj-Z2tPWTGO0XNpanPwGbNNn4dueJuqZYp76ssn6jDHoS9Xnzlh-Kl-Kh8xZ0p9uYxjGPaUpnN20mI3UvGXM_Zys3perKtNc3u3uN5UUdSQK5QcBNceVJDeBG0MwU7LlrhUgE4ouwuqBWyDJlStUcRRfL9BJAXegZqxy9_dSETbjxTfMU1b0Ipz7dQXhRhIEw</recordid><startdate>201002</startdate><enddate>201002</enddate><creator>Bellandi, A.</creator><creator>Nasoni, S.</creator><creator>Tommasi, A.</creator><creator>Zavattari, C.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201002</creationdate><title>Ontology-Driven Relation Extraction by Pattern Discovery</title><author>Bellandi, A. ; Nasoni, S. ; Tommasi, A. ; Zavattari, C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-a205104b53c2b6c466e5d42fe0235a9138dc3f5afc4ea3f63e0a1201aae35b953</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Companies</topic><topic>Computer science</topic><topic>Data mining</topic><topic>Environmental economics</topic><topic>Knowledge management</topic><topic>Law enforcement</topic><topic>Natural languages</topic><topic>Ontologies</topic><topic>Ontology-driven chunker</topic><topic>Pattern discovery</topic><topic>Relation Extraction</topic><topic>System performance</topic><topic>Text analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Bellandi, A.</creatorcontrib><creatorcontrib>Nasoni, S.</creatorcontrib><creatorcontrib>Tommasi, A.</creatorcontrib><creatorcontrib>Zavattari, C.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Bellandi, A.</au><au>Nasoni, S.</au><au>Tommasi, A.</au><au>Zavattari, C.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Ontology-Driven Relation Extraction by Pattern Discovery</atitle><btitle>2010 Second International Conference on Information, Process, and Knowledge Management</btitle><stitle>EKNOW</stitle><date>2010-02</date><risdate>2010</risdate><spage>1</spage><epage>6</epage><pages>1-6</pages><isbn>9781424456888</isbn><isbn>1424456886</isbn><eisbn>9781424456895</eisbn><eisbn>9780769539560</eisbn><eisbn>1424456894</eisbn><eisbn>0769539564</eisbn><abstract>With this paper we describe an ontology-driven system that performs relation extraction over textual data. The system exploits expert knowledge of the domain, including lexical resources, in the form of an ontology to drive the extraction of patterns using manually annotated texts. Such patterns are then applied in order to identify candidates for relation extraction. Paired with basic, reliable named-entity-level text annotation, this results in the discovery of relations among entities in Italian newspaper articles. In the paper, we describe the system and measure its performance.</abstract><pub>IEEE</pub><doi>10.1109/eKNOW.2010.17</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9781424456888
ispartof 2010 Second International Conference on Information, Process, and Knowledge Management, 2010, p.1-6
issn
language eng
recordid cdi_ieee_primary_5430049
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Companies
Computer science
Data mining
Environmental economics
Knowledge management
Law enforcement
Natural languages
Ontologies
Ontology-driven chunker
Pattern discovery
Relation Extraction
System performance
Text analysis
title Ontology-Driven Relation Extraction by Pattern Discovery
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T12%3A21%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Ontology-Driven%20Relation%20Extraction%20by%20Pattern%20Discovery&rft.btitle=2010%20Second%20International%20Conference%20on%20Information,%20Process,%20and%20Knowledge%20Management&rft.au=Bellandi,%20A.&rft.date=2010-02&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.isbn=9781424456888&rft.isbn_list=1424456886&rft_id=info:doi/10.1109/eKNOW.2010.17&rft_dat=%3Cieee_6IE%3E5430049%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424456895&rft.eisbn_list=9780769539560&rft.eisbn_list=1424456894&rft.eisbn_list=0769539564&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5430049&rfr_iscdi=true