Ontology-Driven Relation Extraction by Pattern Discovery
With this paper we describe an ontology-driven system that performs relation extraction over textual data. The system exploits expert knowledge of the domain, including lexical resources, in the form of an ontology to drive the extraction of patterns using manually annotated texts. Such patterns are...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | Bellandi, A. Nasoni, S. Tommasi, A. Zavattari, C. |
description | With this paper we describe an ontology-driven system that performs relation extraction over textual data. The system exploits expert knowledge of the domain, including lexical resources, in the form of an ontology to drive the extraction of patterns using manually annotated texts. Such patterns are then applied in order to identify candidates for relation extraction. Paired with basic, reliable named-entity-level text annotation, this results in the discovery of relations among entities in Italian newspaper articles. In the paper, we describe the system and measure its performance. |
doi_str_mv | 10.1109/eKNOW.2010.17 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5430049</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5430049</ieee_id><sourcerecordid>5430049</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-a205104b53c2b6c466e5d42fe0235a9138dc3f5afc4ea3f63e0a1201aae35b953</originalsourceid><addsrcrecordid>eNpVz81Kw0AUBeAREZSapSs3eYHU-buTmaW01YrFiCguy53pjQzERCZDMW-vVTeuzvk2Bw5jF4LPheDuiu4fmte55AfXR6xwtRVaag3GOjj-Z2tPWTGO0XNpanPwGbNNn4dueJuqZYp76ssn6jDHoS9Xnzlh-Kl-Kh8xZ0p9uYxjGPaUpnN20mI3UvGXM_Zys3perKtNc3u3uN5UUdSQK5QcBNceVJDeBG0MwU7LlrhUgE4ouwuqBWyDJlStUcRRfL9BJAXegZqxy9_dSETbjxTfMU1b0Ipz7dQXhRhIEw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Ontology-Driven Relation Extraction by Pattern Discovery</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Bellandi, A. ; Nasoni, S. ; Tommasi, A. ; Zavattari, C.</creator><creatorcontrib>Bellandi, A. ; Nasoni, S. ; Tommasi, A. ; Zavattari, C.</creatorcontrib><description>With this paper we describe an ontology-driven system that performs relation extraction over textual data. The system exploits expert knowledge of the domain, including lexical resources, in the form of an ontology to drive the extraction of patterns using manually annotated texts. Such patterns are then applied in order to identify candidates for relation extraction. Paired with basic, reliable named-entity-level text annotation, this results in the discovery of relations among entities in Italian newspaper articles. In the paper, we describe the system and measure its performance.</description><identifier>ISBN: 9781424456888</identifier><identifier>ISBN: 1424456886</identifier><identifier>EISBN: 9781424456895</identifier><identifier>EISBN: 9780769539560</identifier><identifier>EISBN: 1424456894</identifier><identifier>EISBN: 0769539564</identifier><identifier>DOI: 10.1109/eKNOW.2010.17</identifier><language>eng</language><publisher>IEEE</publisher><subject>Companies ; Computer science ; Data mining ; Environmental economics ; Knowledge management ; Law enforcement ; Natural languages ; Ontologies ; Ontology-driven chunker ; Pattern discovery ; Relation Extraction ; System performance ; Text analysis</subject><ispartof>2010 Second International Conference on Information, Process, and Knowledge Management, 2010, p.1-6</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5430049$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5430049$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Bellandi, A.</creatorcontrib><creatorcontrib>Nasoni, S.</creatorcontrib><creatorcontrib>Tommasi, A.</creatorcontrib><creatorcontrib>Zavattari, C.</creatorcontrib><title>Ontology-Driven Relation Extraction by Pattern Discovery</title><title>2010 Second International Conference on Information, Process, and Knowledge Management</title><addtitle>EKNOW</addtitle><description>With this paper we describe an ontology-driven system that performs relation extraction over textual data. The system exploits expert knowledge of the domain, including lexical resources, in the form of an ontology to drive the extraction of patterns using manually annotated texts. Such patterns are then applied in order to identify candidates for relation extraction. Paired with basic, reliable named-entity-level text annotation, this results in the discovery of relations among entities in Italian newspaper articles. In the paper, we describe the system and measure its performance.</description><subject>Companies</subject><subject>Computer science</subject><subject>Data mining</subject><subject>Environmental economics</subject><subject>Knowledge management</subject><subject>Law enforcement</subject><subject>Natural languages</subject><subject>Ontologies</subject><subject>Ontology-driven chunker</subject><subject>Pattern discovery</subject><subject>Relation Extraction</subject><subject>System performance</subject><subject>Text analysis</subject><isbn>9781424456888</isbn><isbn>1424456886</isbn><isbn>9781424456895</isbn><isbn>9780769539560</isbn><isbn>1424456894</isbn><isbn>0769539564</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVz81Kw0AUBeAREZSapSs3eYHU-buTmaW01YrFiCguy53pjQzERCZDMW-vVTeuzvk2Bw5jF4LPheDuiu4fmte55AfXR6xwtRVaag3GOjj-Z2tPWTGO0XNpanPwGbNNn4dueJuqZYp76ssn6jDHoS9Xnzlh-Kl-Kh8xZ0p9uYxjGPaUpnN20mI3UvGXM_Zys3perKtNc3u3uN5UUdSQK5QcBNceVJDeBG0MwU7LlrhUgE4ouwuqBWyDJlStUcRRfL9BJAXegZqxy9_dSETbjxTfMU1b0Ipz7dQXhRhIEw</recordid><startdate>201002</startdate><enddate>201002</enddate><creator>Bellandi, A.</creator><creator>Nasoni, S.</creator><creator>Tommasi, A.</creator><creator>Zavattari, C.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201002</creationdate><title>Ontology-Driven Relation Extraction by Pattern Discovery</title><author>Bellandi, A. ; Nasoni, S. ; Tommasi, A. ; Zavattari, C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-a205104b53c2b6c466e5d42fe0235a9138dc3f5afc4ea3f63e0a1201aae35b953</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Companies</topic><topic>Computer science</topic><topic>Data mining</topic><topic>Environmental economics</topic><topic>Knowledge management</topic><topic>Law enforcement</topic><topic>Natural languages</topic><topic>Ontologies</topic><topic>Ontology-driven chunker</topic><topic>Pattern discovery</topic><topic>Relation Extraction</topic><topic>System performance</topic><topic>Text analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Bellandi, A.</creatorcontrib><creatorcontrib>Nasoni, S.</creatorcontrib><creatorcontrib>Tommasi, A.</creatorcontrib><creatorcontrib>Zavattari, C.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Bellandi, A.</au><au>Nasoni, S.</au><au>Tommasi, A.</au><au>Zavattari, C.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Ontology-Driven Relation Extraction by Pattern Discovery</atitle><btitle>2010 Second International Conference on Information, Process, and Knowledge Management</btitle><stitle>EKNOW</stitle><date>2010-02</date><risdate>2010</risdate><spage>1</spage><epage>6</epage><pages>1-6</pages><isbn>9781424456888</isbn><isbn>1424456886</isbn><eisbn>9781424456895</eisbn><eisbn>9780769539560</eisbn><eisbn>1424456894</eisbn><eisbn>0769539564</eisbn><abstract>With this paper we describe an ontology-driven system that performs relation extraction over textual data. The system exploits expert knowledge of the domain, including lexical resources, in the form of an ontology to drive the extraction of patterns using manually annotated texts. Such patterns are then applied in order to identify candidates for relation extraction. Paired with basic, reliable named-entity-level text annotation, this results in the discovery of relations among entities in Italian newspaper articles. In the paper, we describe the system and measure its performance.</abstract><pub>IEEE</pub><doi>10.1109/eKNOW.2010.17</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 9781424456888 |
ispartof | 2010 Second International Conference on Information, Process, and Knowledge Management, 2010, p.1-6 |
issn | |
language | eng |
recordid | cdi_ieee_primary_5430049 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Companies Computer science Data mining Environmental economics Knowledge management Law enforcement Natural languages Ontologies Ontology-driven chunker Pattern discovery Relation Extraction System performance Text analysis |
title | Ontology-Driven Relation Extraction by Pattern Discovery |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T12%3A21%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Ontology-Driven%20Relation%20Extraction%20by%20Pattern%20Discovery&rft.btitle=2010%20Second%20International%20Conference%20on%20Information,%20Process,%20and%20Knowledge%20Management&rft.au=Bellandi,%20A.&rft.date=2010-02&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.isbn=9781424456888&rft.isbn_list=1424456886&rft_id=info:doi/10.1109/eKNOW.2010.17&rft_dat=%3Cieee_6IE%3E5430049%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424456895&rft.eisbn_list=9780769539560&rft.eisbn_list=1424456894&rft.eisbn_list=0769539564&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5430049&rfr_iscdi=true |