Introduction to modeling and generating probabilistic input processes for simulation
Techniques are presented for modeling, fitting, and generating many of the univariate probabilistic input processes that drive discrete-event simulation experiments. Emphasis is given to the generalized beta distribution family, the Johnson translation system of distributions, and the Be¿zier distri...
Gespeichert in:
Hauptverfasser: | , , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 202 |
---|---|
container_issue | |
container_start_page | 184 |
container_title | |
container_volume | |
creator | Kuhl, M.E. Lada, E.K. Wagner, M.A. Ivy, J.S. Steiger, N.M. Wilson, J.R. |
description | Techniques are presented for modeling, fitting, and generating many of the univariate probabilistic input processes that drive discrete-event simulation experiments. Emphasis is given to the generalized beta distribution family, the Johnson translation system of distributions, and the Be¿zier distribution family because of the flexibility of these families to model a wide range of distributional shapes that arise in practical applications. Also discussed are nonparametric and semiparametric techniques for modeling and simulating time-dependent arrival streams using nonhomogeneous Poisson processes. Public-domain software implementations and current applications are presented for each input-modeling technique. The applications range from pharmaceutical manufacturing and medical decision analysis to smart-materials research and healthcare systems analysis. Many of the references include live hyperlinks providing online access to the referenced material. |
doi_str_mv | 10.1109/WSC.2009.5429329 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5429329</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5429329</ieee_id><sourcerecordid>5429329</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-885cbd1e6fd513e46ebc25be133f0a5bc55b7a34beaa147b9a04e175c90184dc3</originalsourceid><addsrcrecordid>eNpVUD1rwzAUVD8CddPshS76A071JD1LGkvoRyDQoSkdgyQ_BxXHDpYz9N83oVk6HXfHHccxdg9iDiDc49fHYi6FcHPU0inpLtjMGQtaao3GSH3JCkC0pVYCr_55QlyzQlgHpTGqmrDCmrJCDVbesNucv4UAiyALtl5249DXhzimvuNjz3d9TW3qttx3Nd9SR4MfT3Q_9MGH1KY8pshTtz-MJy1SzpR50w88p92h9aeeOzZpfJtpdsYp-3x5Xi_eytX763LxtCoTGBxLazGGGqhqagRFuqIQJQYCpRrhMUTEYLzSgbwHbYLzQtMxGd1xva6jmrKHv95ERJv9kHZ--Nmcz1K_uEVZHw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Introduction to modeling and generating probabilistic input processes for simulation</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Kuhl, M.E. ; Lada, E.K. ; Wagner, M.A. ; Ivy, J.S. ; Steiger, N.M. ; Wilson, J.R.</creator><creatorcontrib>Kuhl, M.E. ; Lada, E.K. ; Wagner, M.A. ; Ivy, J.S. ; Steiger, N.M. ; Wilson, J.R.</creatorcontrib><description>Techniques are presented for modeling, fitting, and generating many of the univariate probabilistic input processes that drive discrete-event simulation experiments. Emphasis is given to the generalized beta distribution family, the Johnson translation system of distributions, and the Be¿zier distribution family because of the flexibility of these families to model a wide range of distributional shapes that arise in practical applications. Also discussed are nonparametric and semiparametric techniques for modeling and simulating time-dependent arrival streams using nonhomogeneous Poisson processes. Public-domain software implementations and current applications are presented for each input-modeling technique. The applications range from pharmaceutical manufacturing and medical decision analysis to smart-materials research and healthcare systems analysis. Many of the references include live hyperlinks providing online access to the referenced material.</description><identifier>ISSN: 0891-7736</identifier><identifier>ISBN: 9781424457700</identifier><identifier>ISBN: 142445770X</identifier><identifier>EISSN: 1558-4305</identifier><identifier>EISBN: 9781424457724</identifier><identifier>EISBN: 1424457718</identifier><identifier>EISBN: 9781424457717</identifier><identifier>EISBN: 1424457726</identifier><identifier>DOI: 10.1109/WSC.2009.5429329</identifier><identifier>LCCN: 87-654182</identifier><language>eng</language><publisher>IEEE</publisher><subject>Active shape model ; Application software ; Computational modeling ; Histograms ; Medical simulation ; Parameter estimation ; Shape control ; Synthetic aperture sonar ; Systems engineering and theory ; Testing</subject><ispartof>Proceedings of the 2009 Winter Simulation Conference (WSC), 2009, p.184-202</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5429329$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,27904,54898</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5429329$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kuhl, M.E.</creatorcontrib><creatorcontrib>Lada, E.K.</creatorcontrib><creatorcontrib>Wagner, M.A.</creatorcontrib><creatorcontrib>Ivy, J.S.</creatorcontrib><creatorcontrib>Steiger, N.M.</creatorcontrib><creatorcontrib>Wilson, J.R.</creatorcontrib><title>Introduction to modeling and generating probabilistic input processes for simulation</title><title>Proceedings of the 2009 Winter Simulation Conference (WSC)</title><addtitle>WSC</addtitle><description>Techniques are presented for modeling, fitting, and generating many of the univariate probabilistic input processes that drive discrete-event simulation experiments. Emphasis is given to the generalized beta distribution family, the Johnson translation system of distributions, and the Be¿zier distribution family because of the flexibility of these families to model a wide range of distributional shapes that arise in practical applications. Also discussed are nonparametric and semiparametric techniques for modeling and simulating time-dependent arrival streams using nonhomogeneous Poisson processes. Public-domain software implementations and current applications are presented for each input-modeling technique. The applications range from pharmaceutical manufacturing and medical decision analysis to smart-materials research and healthcare systems analysis. Many of the references include live hyperlinks providing online access to the referenced material.</description><subject>Active shape model</subject><subject>Application software</subject><subject>Computational modeling</subject><subject>Histograms</subject><subject>Medical simulation</subject><subject>Parameter estimation</subject><subject>Shape control</subject><subject>Synthetic aperture sonar</subject><subject>Systems engineering and theory</subject><subject>Testing</subject><issn>0891-7736</issn><issn>1558-4305</issn><isbn>9781424457700</isbn><isbn>142445770X</isbn><isbn>9781424457724</isbn><isbn>1424457718</isbn><isbn>9781424457717</isbn><isbn>1424457726</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVUD1rwzAUVD8CddPshS76A071JD1LGkvoRyDQoSkdgyQ_BxXHDpYz9N83oVk6HXfHHccxdg9iDiDc49fHYi6FcHPU0inpLtjMGQtaao3GSH3JCkC0pVYCr_55QlyzQlgHpTGqmrDCmrJCDVbesNucv4UAiyALtl5249DXhzimvuNjz3d9TW3qttx3Nd9SR4MfT3Q_9MGH1KY8pshTtz-MJy1SzpR50w88p92h9aeeOzZpfJtpdsYp-3x5Xi_eytX763LxtCoTGBxLazGGGqhqagRFuqIQJQYCpRrhMUTEYLzSgbwHbYLzQtMxGd1xva6jmrKHv95ERJv9kHZ--Nmcz1K_uEVZHw</recordid><startdate>200912</startdate><enddate>200912</enddate><creator>Kuhl, M.E.</creator><creator>Lada, E.K.</creator><creator>Wagner, M.A.</creator><creator>Ivy, J.S.</creator><creator>Steiger, N.M.</creator><creator>Wilson, J.R.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>200912</creationdate><title>Introduction to modeling and generating probabilistic input processes for simulation</title><author>Kuhl, M.E. ; Lada, E.K. ; Wagner, M.A. ; Ivy, J.S. ; Steiger, N.M. ; Wilson, J.R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-885cbd1e6fd513e46ebc25be133f0a5bc55b7a34beaa147b9a04e175c90184dc3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Active shape model</topic><topic>Application software</topic><topic>Computational modeling</topic><topic>Histograms</topic><topic>Medical simulation</topic><topic>Parameter estimation</topic><topic>Shape control</topic><topic>Synthetic aperture sonar</topic><topic>Systems engineering and theory</topic><topic>Testing</topic><toplevel>online_resources</toplevel><creatorcontrib>Kuhl, M.E.</creatorcontrib><creatorcontrib>Lada, E.K.</creatorcontrib><creatorcontrib>Wagner, M.A.</creatorcontrib><creatorcontrib>Ivy, J.S.</creatorcontrib><creatorcontrib>Steiger, N.M.</creatorcontrib><creatorcontrib>Wilson, J.R.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kuhl, M.E.</au><au>Lada, E.K.</au><au>Wagner, M.A.</au><au>Ivy, J.S.</au><au>Steiger, N.M.</au><au>Wilson, J.R.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Introduction to modeling and generating probabilistic input processes for simulation</atitle><btitle>Proceedings of the 2009 Winter Simulation Conference (WSC)</btitle><stitle>WSC</stitle><date>2009-12</date><risdate>2009</risdate><spage>184</spage><epage>202</epage><pages>184-202</pages><issn>0891-7736</issn><eissn>1558-4305</eissn><isbn>9781424457700</isbn><isbn>142445770X</isbn><eisbn>9781424457724</eisbn><eisbn>1424457718</eisbn><eisbn>9781424457717</eisbn><eisbn>1424457726</eisbn><abstract>Techniques are presented for modeling, fitting, and generating many of the univariate probabilistic input processes that drive discrete-event simulation experiments. Emphasis is given to the generalized beta distribution family, the Johnson translation system of distributions, and the Be¿zier distribution family because of the flexibility of these families to model a wide range of distributional shapes that arise in practical applications. Also discussed are nonparametric and semiparametric techniques for modeling and simulating time-dependent arrival streams using nonhomogeneous Poisson processes. Public-domain software implementations and current applications are presented for each input-modeling technique. The applications range from pharmaceutical manufacturing and medical decision analysis to smart-materials research and healthcare systems analysis. Many of the references include live hyperlinks providing online access to the referenced material.</abstract><pub>IEEE</pub><doi>10.1109/WSC.2009.5429329</doi><tpages>19</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0891-7736 |
ispartof | Proceedings of the 2009 Winter Simulation Conference (WSC), 2009, p.184-202 |
issn | 0891-7736 1558-4305 |
language | eng |
recordid | cdi_ieee_primary_5429329 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Active shape model Application software Computational modeling Histograms Medical simulation Parameter estimation Shape control Synthetic aperture sonar Systems engineering and theory Testing |
title | Introduction to modeling and generating probabilistic input processes for simulation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T15%3A55%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Introduction%20to%20modeling%20and%20generating%20probabilistic%20input%20processes%20for%20simulation&rft.btitle=Proceedings%20of%20the%202009%20Winter%20Simulation%20Conference%20(WSC)&rft.au=Kuhl,%20M.E.&rft.date=2009-12&rft.spage=184&rft.epage=202&rft.pages=184-202&rft.issn=0891-7736&rft.eissn=1558-4305&rft.isbn=9781424457700&rft.isbn_list=142445770X&rft_id=info:doi/10.1109/WSC.2009.5429329&rft_dat=%3Cieee_6IE%3E5429329%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424457724&rft.eisbn_list=1424457718&rft.eisbn_list=9781424457717&rft.eisbn_list=1424457726&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5429329&rfr_iscdi=true |