Introduction to modeling and generating probabilistic input processes for simulation

Techniques are presented for modeling, fitting, and generating many of the univariate probabilistic input processes that drive discrete-event simulation experiments. Emphasis is given to the generalized beta distribution family, the Johnson translation system of distributions, and the Be¿zier distri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Kuhl, M.E., Lada, E.K., Wagner, M.A., Ivy, J.S., Steiger, N.M., Wilson, J.R.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 202
container_issue
container_start_page 184
container_title
container_volume
creator Kuhl, M.E.
Lada, E.K.
Wagner, M.A.
Ivy, J.S.
Steiger, N.M.
Wilson, J.R.
description Techniques are presented for modeling, fitting, and generating many of the univariate probabilistic input processes that drive discrete-event simulation experiments. Emphasis is given to the generalized beta distribution family, the Johnson translation system of distributions, and the Be¿zier distribution family because of the flexibility of these families to model a wide range of distributional shapes that arise in practical applications. Also discussed are nonparametric and semiparametric techniques for modeling and simulating time-dependent arrival streams using nonhomogeneous Poisson processes. Public-domain software implementations and current applications are presented for each input-modeling technique. The applications range from pharmaceutical manufacturing and medical decision analysis to smart-materials research and healthcare systems analysis. Many of the references include live hyperlinks providing online access to the referenced material.
doi_str_mv 10.1109/WSC.2009.5429329
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5429329</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5429329</ieee_id><sourcerecordid>5429329</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-885cbd1e6fd513e46ebc25be133f0a5bc55b7a34beaa147b9a04e175c90184dc3</originalsourceid><addsrcrecordid>eNpVUD1rwzAUVD8CddPshS76A071JD1LGkvoRyDQoSkdgyQ_BxXHDpYz9N83oVk6HXfHHccxdg9iDiDc49fHYi6FcHPU0inpLtjMGQtaao3GSH3JCkC0pVYCr_55QlyzQlgHpTGqmrDCmrJCDVbesNucv4UAiyALtl5249DXhzimvuNjz3d9TW3qttx3Nd9SR4MfT3Q_9MGH1KY8pshTtz-MJy1SzpR50w88p92h9aeeOzZpfJtpdsYp-3x5Xi_eytX763LxtCoTGBxLazGGGqhqagRFuqIQJQYCpRrhMUTEYLzSgbwHbYLzQtMxGd1xva6jmrKHv95ERJv9kHZ--Nmcz1K_uEVZHw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Introduction to modeling and generating probabilistic input processes for simulation</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Kuhl, M.E. ; Lada, E.K. ; Wagner, M.A. ; Ivy, J.S. ; Steiger, N.M. ; Wilson, J.R.</creator><creatorcontrib>Kuhl, M.E. ; Lada, E.K. ; Wagner, M.A. ; Ivy, J.S. ; Steiger, N.M. ; Wilson, J.R.</creatorcontrib><description>Techniques are presented for modeling, fitting, and generating many of the univariate probabilistic input processes that drive discrete-event simulation experiments. Emphasis is given to the generalized beta distribution family, the Johnson translation system of distributions, and the Be¿zier distribution family because of the flexibility of these families to model a wide range of distributional shapes that arise in practical applications. Also discussed are nonparametric and semiparametric techniques for modeling and simulating time-dependent arrival streams using nonhomogeneous Poisson processes. Public-domain software implementations and current applications are presented for each input-modeling technique. The applications range from pharmaceutical manufacturing and medical decision analysis to smart-materials research and healthcare systems analysis. Many of the references include live hyperlinks providing online access to the referenced material.</description><identifier>ISSN: 0891-7736</identifier><identifier>ISBN: 9781424457700</identifier><identifier>ISBN: 142445770X</identifier><identifier>EISSN: 1558-4305</identifier><identifier>EISBN: 9781424457724</identifier><identifier>EISBN: 1424457718</identifier><identifier>EISBN: 9781424457717</identifier><identifier>EISBN: 1424457726</identifier><identifier>DOI: 10.1109/WSC.2009.5429329</identifier><identifier>LCCN: 87-654182</identifier><language>eng</language><publisher>IEEE</publisher><subject>Active shape model ; Application software ; Computational modeling ; Histograms ; Medical simulation ; Parameter estimation ; Shape control ; Synthetic aperture sonar ; Systems engineering and theory ; Testing</subject><ispartof>Proceedings of the 2009 Winter Simulation Conference (WSC), 2009, p.184-202</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5429329$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,27904,54898</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5429329$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kuhl, M.E.</creatorcontrib><creatorcontrib>Lada, E.K.</creatorcontrib><creatorcontrib>Wagner, M.A.</creatorcontrib><creatorcontrib>Ivy, J.S.</creatorcontrib><creatorcontrib>Steiger, N.M.</creatorcontrib><creatorcontrib>Wilson, J.R.</creatorcontrib><title>Introduction to modeling and generating probabilistic input processes for simulation</title><title>Proceedings of the 2009 Winter Simulation Conference (WSC)</title><addtitle>WSC</addtitle><description>Techniques are presented for modeling, fitting, and generating many of the univariate probabilistic input processes that drive discrete-event simulation experiments. Emphasis is given to the generalized beta distribution family, the Johnson translation system of distributions, and the Be¿zier distribution family because of the flexibility of these families to model a wide range of distributional shapes that arise in practical applications. Also discussed are nonparametric and semiparametric techniques for modeling and simulating time-dependent arrival streams using nonhomogeneous Poisson processes. Public-domain software implementations and current applications are presented for each input-modeling technique. The applications range from pharmaceutical manufacturing and medical decision analysis to smart-materials research and healthcare systems analysis. Many of the references include live hyperlinks providing online access to the referenced material.</description><subject>Active shape model</subject><subject>Application software</subject><subject>Computational modeling</subject><subject>Histograms</subject><subject>Medical simulation</subject><subject>Parameter estimation</subject><subject>Shape control</subject><subject>Synthetic aperture sonar</subject><subject>Systems engineering and theory</subject><subject>Testing</subject><issn>0891-7736</issn><issn>1558-4305</issn><isbn>9781424457700</isbn><isbn>142445770X</isbn><isbn>9781424457724</isbn><isbn>1424457718</isbn><isbn>9781424457717</isbn><isbn>1424457726</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVUD1rwzAUVD8CddPshS76A071JD1LGkvoRyDQoSkdgyQ_BxXHDpYz9N83oVk6HXfHHccxdg9iDiDc49fHYi6FcHPU0inpLtjMGQtaao3GSH3JCkC0pVYCr_55QlyzQlgHpTGqmrDCmrJCDVbesNucv4UAiyALtl5249DXhzimvuNjz3d9TW3qttx3Nd9SR4MfT3Q_9MGH1KY8pshTtz-MJy1SzpR50w88p92h9aeeOzZpfJtpdsYp-3x5Xi_eytX763LxtCoTGBxLazGGGqhqagRFuqIQJQYCpRrhMUTEYLzSgbwHbYLzQtMxGd1xva6jmrKHv95ERJv9kHZ--Nmcz1K_uEVZHw</recordid><startdate>200912</startdate><enddate>200912</enddate><creator>Kuhl, M.E.</creator><creator>Lada, E.K.</creator><creator>Wagner, M.A.</creator><creator>Ivy, J.S.</creator><creator>Steiger, N.M.</creator><creator>Wilson, J.R.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>200912</creationdate><title>Introduction to modeling and generating probabilistic input processes for simulation</title><author>Kuhl, M.E. ; Lada, E.K. ; Wagner, M.A. ; Ivy, J.S. ; Steiger, N.M. ; Wilson, J.R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-885cbd1e6fd513e46ebc25be133f0a5bc55b7a34beaa147b9a04e175c90184dc3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Active shape model</topic><topic>Application software</topic><topic>Computational modeling</topic><topic>Histograms</topic><topic>Medical simulation</topic><topic>Parameter estimation</topic><topic>Shape control</topic><topic>Synthetic aperture sonar</topic><topic>Systems engineering and theory</topic><topic>Testing</topic><toplevel>online_resources</toplevel><creatorcontrib>Kuhl, M.E.</creatorcontrib><creatorcontrib>Lada, E.K.</creatorcontrib><creatorcontrib>Wagner, M.A.</creatorcontrib><creatorcontrib>Ivy, J.S.</creatorcontrib><creatorcontrib>Steiger, N.M.</creatorcontrib><creatorcontrib>Wilson, J.R.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kuhl, M.E.</au><au>Lada, E.K.</au><au>Wagner, M.A.</au><au>Ivy, J.S.</au><au>Steiger, N.M.</au><au>Wilson, J.R.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Introduction to modeling and generating probabilistic input processes for simulation</atitle><btitle>Proceedings of the 2009 Winter Simulation Conference (WSC)</btitle><stitle>WSC</stitle><date>2009-12</date><risdate>2009</risdate><spage>184</spage><epage>202</epage><pages>184-202</pages><issn>0891-7736</issn><eissn>1558-4305</eissn><isbn>9781424457700</isbn><isbn>142445770X</isbn><eisbn>9781424457724</eisbn><eisbn>1424457718</eisbn><eisbn>9781424457717</eisbn><eisbn>1424457726</eisbn><abstract>Techniques are presented for modeling, fitting, and generating many of the univariate probabilistic input processes that drive discrete-event simulation experiments. Emphasis is given to the generalized beta distribution family, the Johnson translation system of distributions, and the Be¿zier distribution family because of the flexibility of these families to model a wide range of distributional shapes that arise in practical applications. Also discussed are nonparametric and semiparametric techniques for modeling and simulating time-dependent arrival streams using nonhomogeneous Poisson processes. Public-domain software implementations and current applications are presented for each input-modeling technique. The applications range from pharmaceutical manufacturing and medical decision analysis to smart-materials research and healthcare systems analysis. Many of the references include live hyperlinks providing online access to the referenced material.</abstract><pub>IEEE</pub><doi>10.1109/WSC.2009.5429329</doi><tpages>19</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0891-7736
ispartof Proceedings of the 2009 Winter Simulation Conference (WSC), 2009, p.184-202
issn 0891-7736
1558-4305
language eng
recordid cdi_ieee_primary_5429329
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Active shape model
Application software
Computational modeling
Histograms
Medical simulation
Parameter estimation
Shape control
Synthetic aperture sonar
Systems engineering and theory
Testing
title Introduction to modeling and generating probabilistic input processes for simulation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T15%3A55%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Introduction%20to%20modeling%20and%20generating%20probabilistic%20input%20processes%20for%20simulation&rft.btitle=Proceedings%20of%20the%202009%20Winter%20Simulation%20Conference%20(WSC)&rft.au=Kuhl,%20M.E.&rft.date=2009-12&rft.spage=184&rft.epage=202&rft.pages=184-202&rft.issn=0891-7736&rft.eissn=1558-4305&rft.isbn=9781424457700&rft.isbn_list=142445770X&rft_id=info:doi/10.1109/WSC.2009.5429329&rft_dat=%3Cieee_6IE%3E5429329%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424457724&rft.eisbn_list=1424457718&rft.eisbn_list=9781424457717&rft.eisbn_list=1424457726&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5429329&rfr_iscdi=true